Files
pytorch/caffe2/python/layers/sparse_lookup.py
2016-11-15 00:00:46 -08:00

97 lines
3.7 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
IdList,
IdScoreList,
LayerParameter,
ModelLayer,
)
import math
import numpy as np
class SparseLookup(ModelLayer):
_supported_reducers = ['LogMeanExp', 'LogSumExp', 'Max', 'Mean', 'Sum']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
# TODO Add some asserts about input type
assert reducer in self._supported_reducers, "Unsupported reducer: {}".\
format(reducer)
self.reducer = reducer
assert input_record.items.metadata is not None,\
"Features without metadata are not supported"
input_dim = input_record.items.metadata.categorical_limit
assert input_dim is not None, "Unbounded features are not supported"
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
core.BlobReference(model.net.NextName(self.name + '_output')))
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = model.net.NextName(self.name + "_w")
self.params.append(
LayerParameter(
parameter=self.w,
initializer=core.CreateOperator(self.weight_init[0],
[],
self.w,
shape=self.shape,
**self.weight_init[1]
),
optimizer=weight_optim
))
def add_ops(self, net):
if schema.equal_schemas(self.input_record, IdList):
if self.reducer == 'Sum':
net.SparseLengthsSum(
[
self.w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
else:
table_rows = net.Gather([self.w, self.input_record.keys()])
segments = net.LengthsToRanges(self.input_record.lengths())
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segments],
self.output_schema.field_blobs()
)
elif schema.equal_schemas(self.input_record, IdScoreList):
if self.reducer == 'Sum':
net.SparseLengthsWeightedSum(
[
self.w,
self.input_record.values(),
self.input_record.keys(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
else:
raise "Only Sum is supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
else:
raise "Unsupported input type {0}".format(self.input_record)