mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
## Motivation The FSDP common code for FSDP UT execution is mostly written with cuda device in mind. However other devices such the intel Gaudi supports most of the functionality. We are generalizing the base content so that the UT content can be used for non-cuda device execution. Pull Request resolved: https://github.com/pytorch/pytorch/pull/133209 Approved by: https://github.com/kwen2501
1565 lines
56 KiB
Python
1565 lines
56 KiB
Python
# mypy: allow-untyped-defs
|
|
# Owner(s): ["oncall: distributed"]
|
|
|
|
import contextlib
|
|
import os
|
|
import re
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from contextlib import nullcontext
|
|
from copy import deepcopy
|
|
from enum import auto, Enum
|
|
from functools import wraps
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
no_type_check,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
from unittest import mock
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.distributed._composable import checkpoint
|
|
from torch.distributed._composable.fsdp import fully_shard
|
|
from torch.distributed._composable.fsdp._fsdp_param_group import (
|
|
FSDPParamGroup,
|
|
RegisterPostBackwardFunction,
|
|
)
|
|
from torch.distributed.device_mesh import DeviceMesh
|
|
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
|
|
from torch.distributed.fsdp._common_utils import TrainingState
|
|
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import (
|
|
BackwardPrefetch,
|
|
MixedPrecision,
|
|
ShardingStrategy,
|
|
)
|
|
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
|
|
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy, wrap
|
|
from torch.distributed.tensor import distribute_tensor, DTensor, Shard
|
|
from torch.distributed.tensor.parallel import (
|
|
ColwiseParallel,
|
|
parallelize_module,
|
|
RowwiseParallel,
|
|
SequenceParallel,
|
|
)
|
|
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
|
|
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
|
|
from torch.testing._internal.common_distributed import (
|
|
MultiProcessTestCase,
|
|
MultiThreadedTestCase,
|
|
run_subtests,
|
|
TEST_SKIPS,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
FILE_SCHEMA,
|
|
get_cycles_per_ms,
|
|
TEST_CUDA,
|
|
TEST_HPU,
|
|
)
|
|
from torch.utils._triton import has_triton
|
|
|
|
|
|
DEVICE_COUNT = 4 # default
|
|
|
|
if TEST_CUDA:
|
|
DEVICE_TYPE = "cuda"
|
|
DISTRIBUTED_BACKEND = "nccl"
|
|
DEVICE_COUNT = torch.cuda.device_count()
|
|
elif TEST_HPU:
|
|
DEVICE_TYPE = "hpu:0"
|
|
DISTRIBUTED_BACKEND = "hccl"
|
|
else:
|
|
DEVICE_TYPE = "cpu"
|
|
DISTRIBUTED_BACKEND = "gloo"
|
|
DEVICE_COUNT = 1
|
|
|
|
|
|
class FSDPInitMode(Enum):
|
|
# No FSDP wrapping
|
|
NO_FSDP = auto()
|
|
# FSDP recursive wrapping
|
|
RECURSIVE = auto()
|
|
# TODO: FSDP non-recursive wrapping
|
|
# NONRECURSIVE = auto()
|
|
|
|
|
|
class DEVICEInitMode(Enum):
|
|
# Move model to DEVICE before passing to the FSDP constructor
|
|
DEVICE_BEFORE = auto()
|
|
# Move model to DEVICE after passing to the FSDP constructor
|
|
DEVICE_AFTER = auto()
|
|
# Keep on CPU
|
|
DEVICE_NEVER = auto()
|
|
|
|
|
|
class FSDPTestModel(nn.Module, ABC):
|
|
"""This defines the interface expected from all models used commonly for
|
|
FSDP unit tests."""
|
|
|
|
@abstractmethod
|
|
def get_input(self, device) -> Tuple[torch.Tensor, ...]:
|
|
"""Returns an input for the model as as tuple."""
|
|
...
|
|
|
|
@abstractmethod
|
|
def get_loss(self, input, output) -> torch.Tensor:
|
|
"""Returns the loss given the input and output."""
|
|
...
|
|
|
|
@abstractmethod
|
|
def run_backward(self, loss) -> None:
|
|
"""Runs the backward pass (e.g. including ``loss.backward()``)."""
|
|
...
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def init(*args: Any, **kwargs: Any) -> nn.Module:
|
|
"""Initializes an instance of this model."""
|
|
...
|
|
|
|
|
|
def _assert_module_states(
|
|
model: nn.Module,
|
|
process_group: dist.ProcessGroup,
|
|
assert_fn: Callable,
|
|
):
|
|
"""
|
|
All-gathers module states across ranks and calls ``assert_fn`` on each pair
|
|
of corresponding states from rank 0 and a nonzero rank. For example, if
|
|
``assert_fn`` is ``self.assertEqual()``, then this checks that all module
|
|
states are equal across ranks.
|
|
"""
|
|
# Include names for debugging convenience
|
|
named_module_states = [
|
|
(param_name, param.detach().cpu())
|
|
for param_name, param in model.named_parameters()
|
|
]
|
|
named_module_states += [
|
|
(buffer_name, buffer.detach().cpu())
|
|
for buffer_name, buffer in model.named_buffers()
|
|
]
|
|
world_size = dist.get_world_size(process_group)
|
|
olist = [None for _ in range(world_size)]
|
|
dist.all_gather_object(olist, named_module_states, group=process_group)
|
|
rank0_states = olist[0]
|
|
assert rank0_states is not None # mypy
|
|
for state in olist[1:]:
|
|
assert state is not None # mypy
|
|
for (_, p1), (_, p2) in zip(rank0_states, state):
|
|
assert_fn(p1, p2)
|
|
|
|
|
|
def _zero_model(
|
|
model: nn.Module,
|
|
zero_buffers: bool = False,
|
|
summon_full=True,
|
|
):
|
|
"""Zeros the parameters and optionally buffers of ``model`` in place."""
|
|
ctx = FSDP.summon_full_params(model) if summon_full else nullcontext()
|
|
with ctx:
|
|
for param in model.parameters():
|
|
with torch.no_grad():
|
|
param.zero_()
|
|
if zero_buffers:
|
|
for buffer in model.buffers():
|
|
with torch.no_grad():
|
|
buffer.zero_()
|
|
|
|
|
|
def _get_state_dict(model, cpu_offload=False, half=False):
|
|
if not cpu_offload:
|
|
model = model.to(DEVICE_TYPE)
|
|
if half:
|
|
model.half()
|
|
|
|
return model.state_dict()
|
|
|
|
|
|
def subtest_name(test_name_mapping, *args):
|
|
return "_".join(
|
|
[test_name_mapping[str(s)] if s is not None else "none" for s in args]
|
|
)
|
|
|
|
|
|
def _broadcast_state_dict(rank, state_dict):
|
|
# For non-FSDP roots, some parts of the model state on rank 0 may
|
|
# not be on CPU, so we move everything to CPU to avoid issues like:
|
|
# https://github.com/pytorch/pytorch/issues/77113.
|
|
for param_name, param in state_dict.items():
|
|
if param.device != torch.device("cpu"):
|
|
state_dict[param_name] = param.cpu()
|
|
|
|
olist = [state_dict if rank == 0 else None]
|
|
dist.broadcast_object_list(olist)
|
|
state_dict = olist[0]
|
|
# Ensure that the state is on DEVICE
|
|
for param_name in state_dict.keys():
|
|
state_dict[param_name] = state_dict[param_name].to(DEVICE_TYPE)
|
|
return state_dict
|
|
|
|
|
|
def get_full_params(model: nn.Module, recurse: bool = True):
|
|
"""
|
|
Returns the full unsharded parameters of ``model``. Any FSDP-managed
|
|
parameters offloaded to CPU are moved to GPU in the returned list.
|
|
|
|
Args:
|
|
recurse (bool): If ``False``, only unshards the parameters immediate to
|
|
``model``; if ``True``, recurses through the module hierarchy
|
|
rooted at ``model``.
|
|
"""
|
|
with FSDP.summon_full_params(model, recurse=recurse):
|
|
return deepcopy(list(model.parameters()))
|
|
|
|
|
|
def _move_to_device(model: nn.Module, move_to_device: bool):
|
|
return model.to(DEVICE_TYPE) if move_to_device else model
|
|
|
|
|
|
def _maybe_wrap_fsdp(model: nn.Module, wrap_fsdp: bool, *args, **kwargs):
|
|
return model if not wrap_fsdp else FSDP(model, *args, **kwargs)
|
|
|
|
|
|
class DummyProcessGroup:
|
|
def __init__(self, rank: int, size: int):
|
|
self._rank = rank
|
|
self._size = size
|
|
|
|
def rank(self) -> int:
|
|
return self._rank
|
|
|
|
def size(self) -> int:
|
|
return self._size
|
|
|
|
def allreduce(self, *args, **kwargs):
|
|
dist_wait = mock.Mock()
|
|
|
|
def get_future():
|
|
future: torch.futures.Future = torch.futures.Future()
|
|
future.set_result(1)
|
|
return future
|
|
|
|
dist_wait.get_future = get_future
|
|
return dist_wait
|
|
|
|
|
|
class TransformerWithSharedParams(FSDPTestModel):
|
|
def __init__(
|
|
self,
|
|
group: dist.ProcessGroup,
|
|
device_init_mode: DEVICEInitMode,
|
|
add_bn: bool,
|
|
deterministic: bool,
|
|
):
|
|
super().__init__()
|
|
self.rank = group.rank()
|
|
self.world_size = group.size()
|
|
if deterministic:
|
|
torch.manual_seed(0)
|
|
d_vocab = 23
|
|
d_model = 16
|
|
|
|
self.embed_tokens = nn.Embedding(d_vocab, d_model)
|
|
self.transformer = nn.Transformer(
|
|
d_model=d_model,
|
|
num_encoder_layers=2,
|
|
num_decoder_layers=2,
|
|
dim_feedforward=8,
|
|
dropout=0.1,
|
|
)
|
|
self.output_proj = nn.Linear(d_model, d_vocab)
|
|
|
|
# share the embedding and output projection weights
|
|
self.output_proj.weight = self.embed_tokens.weight
|
|
self.register_buffer(
|
|
"vocab_bias", self.embed_tokens.weight.new_ones((d_model,))
|
|
)
|
|
self.register_buffer(
|
|
"long_buffer",
|
|
torch.zeros_like(self.vocab_bias, dtype=torch.long),
|
|
) # type: ignore[arg-type]
|
|
|
|
self.bs = 2
|
|
self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity()
|
|
if device_init_mode == DEVICEInitMode.DEVICE_BEFORE:
|
|
self = self.to(DEVICE_TYPE)
|
|
if deterministic:
|
|
self.eval()
|
|
|
|
def get_input(self, device):
|
|
torch.manual_seed(1 + self.rank) # keep everything deterministic
|
|
src = torch.arange(12, device=device).view(6, self.bs) # T x B
|
|
tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B
|
|
return (src, tgt)
|
|
|
|
def forward(self, src_ids, tgt_ids):
|
|
src = self.embed_tokens(src_ids)
|
|
src = src + self.vocab_bias + self.long_buffer.type_as(src) # type: ignore[operator]
|
|
tgt = self.embed_tokens(tgt_ids)
|
|
tgt = self.bn(tgt)
|
|
x = self.transformer(src, tgt)
|
|
return self.output_proj(x)
|
|
|
|
def get_loss(self, input, output):
|
|
_, tgt = input
|
|
return nn.functional.cross_entropy(
|
|
output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum"
|
|
)
|
|
|
|
def run_backward(self, loss):
|
|
loss.backward()
|
|
|
|
@staticmethod
|
|
def init(
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
add_bn: bool = True,
|
|
) -> Union[nn.Module, FSDP]:
|
|
"""
|
|
Initializes a :class:`TransformerWithSharedParams` instance.
|
|
|
|
Args:
|
|
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
|
any modules with FSDP. If ``RECURSIVE``, then wraps with
|
|
top-level FSDP. By default, the top-level FSDP uses the
|
|
``ModuleWrapPolicy`` for encoder and decoder layers, but a
|
|
different auto wrap policy may be specified via
|
|
``fsdp_kwargs``.
|
|
device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
|
|
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
|
forwarded to the FSDP constructor.
|
|
deterministic (bool): Whether to make the model deterministic
|
|
across constructions.
|
|
add_bn (bool): Whether to include batch norm in the model.
|
|
"""
|
|
|
|
if fsdp_kwargs is None:
|
|
fsdp_kwargs = {}
|
|
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
|
if isinstance(group, tuple):
|
|
pg = group[0]
|
|
else:
|
|
pg = group
|
|
return TransformerWithSharedParams(
|
|
pg, device_init_mode, add_bn, deterministic
|
|
)
|
|
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
|
# Default to the `ModuleWrapPolicy`
|
|
if "auto_wrap_policy" not in fsdp_kwargs:
|
|
auto_wrap_policy = ModuleWrapPolicy(
|
|
{
|
|
TransformerEncoderLayer,
|
|
TransformerDecoderLayer,
|
|
}
|
|
)
|
|
else:
|
|
auto_wrap_policy = fsdp_kwargs.pop("auto_wrap_policy")
|
|
|
|
if (
|
|
"sharding_strategy" in fsdp_kwargs
|
|
and fsdp_kwargs["sharding_strategy"]
|
|
in {ShardingStrategy.HYBRID_SHARD, ShardingStrategy._HYBRID_SHARD_ZERO2}
|
|
and not isinstance(group, tuple)
|
|
):
|
|
fsdp_pg = None
|
|
else:
|
|
fsdp_pg = group
|
|
|
|
if isinstance(group, tuple):
|
|
tformer_pg = group[0]
|
|
else:
|
|
tformer_pg = group
|
|
|
|
m = TransformerWithSharedParams(
|
|
tformer_pg, device_init_mode, add_bn, deterministic
|
|
)
|
|
fsdp_model = FSDP(
|
|
m,
|
|
fsdp_pg,
|
|
auto_wrap_policy=auto_wrap_policy,
|
|
**fsdp_kwargs,
|
|
)
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
return fsdp_model
|
|
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
|
|
|
def get_ignored_modules(self):
|
|
return [self.transformer]
|
|
|
|
|
|
class NestedWrappedModule(FSDPTestModel):
|
|
def __init__(
|
|
self,
|
|
group: dist.ProcessGroup,
|
|
wrap_fsdp: bool,
|
|
device_init_mode: DEVICEInitMode,
|
|
deterministic: bool,
|
|
**fsdp_kwargs,
|
|
):
|
|
super().__init__()
|
|
self.rank = group.rank()
|
|
self.world_size = group.size()
|
|
move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE
|
|
|
|
def _maybe_wrap(layer):
|
|
if wrap_fsdp:
|
|
return FSDP(layer, group, **fsdp_kwargs)
|
|
return layer
|
|
|
|
if deterministic:
|
|
torch.manual_seed(0)
|
|
self.module = nn.Sequential(
|
|
_move_to_device(nn.Linear(8, 4), move_to_device),
|
|
_maybe_wrap(
|
|
nn.Sequential(
|
|
_maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)),
|
|
_move_to_device(nn.Linear(16, 16), move_to_device),
|
|
),
|
|
),
|
|
_maybe_wrap(_move_to_device(nn.Linear(16, 4), move_to_device)),
|
|
_move_to_device(nn.Linear(4, 8), move_to_device),
|
|
)
|
|
|
|
def get_input(self, device):
|
|
torch.manual_seed(1 + self.rank) # keep everything deterministic
|
|
return (torch.rand(4, 8, device=device),)
|
|
|
|
def forward(self, x):
|
|
return self.module(x)
|
|
|
|
def get_loss(self, input, output):
|
|
loss = output.sum()
|
|
return loss
|
|
|
|
def run_backward(self, loss):
|
|
loss.backward()
|
|
|
|
@staticmethod
|
|
def init(
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
) -> nn.Module:
|
|
"""
|
|
Initializes a :class:`NestedWrappedModule` instance.
|
|
|
|
Args:
|
|
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
|
any modules with FSDP. If ``RECURSIVE``, then wraps some nested
|
|
modules with FSDP but not the top-level module. The model may
|
|
later be wrapped with a top-level FSDP external to this method
|
|
if desired.
|
|
device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
|
|
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
|
forwarded to the FSDP constructor.
|
|
deterministic (bool): Whether to make the model deterministic
|
|
across constructions.
|
|
"""
|
|
if fsdp_kwargs is None:
|
|
fsdp_kwargs = {}
|
|
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
|
return NestedWrappedModule(
|
|
group,
|
|
wrap_fsdp=False,
|
|
device_init_mode=device_init_mode,
|
|
deterministic=deterministic,
|
|
)
|
|
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
|
# Does not wrap with top-level FSDP
|
|
fsdp_model = NestedWrappedModule(
|
|
group,
|
|
wrap_fsdp=True,
|
|
device_init_mode=device_init_mode,
|
|
deterministic=deterministic,
|
|
**fsdp_kwargs,
|
|
)
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
return fsdp_model
|
|
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
|
|
|
|
|
class AlwaysWrapNestedWrappedModule(NestedWrappedModule):
|
|
@staticmethod
|
|
def init(
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
):
|
|
"""
|
|
Initializes a :class:`NestedWrappedModule` instance, but unlike
|
|
:meth:`NestedWrappedModule.init`, for the ``RECURSIVE`` init mode, this
|
|
wraps with top-level FSDP and the ``always_wrap_policy()`` auto wrap
|
|
policy.
|
|
"""
|
|
model = super(
|
|
AlwaysWrapNestedWrappedModule, AlwaysWrapNestedWrappedModule
|
|
).init(
|
|
group=group,
|
|
fsdp_init_mode=FSDPInitMode.NO_FSDP,
|
|
device_init_mode=device_init_mode,
|
|
fsdp_kwargs=fsdp_kwargs,
|
|
deterministic=deterministic,
|
|
)
|
|
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
|
return model
|
|
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
|
fsdp_kwargs = fsdp_kwargs or {}
|
|
fsdp_model = FSDP(model, auto_wrap_policy=always_wrap_policy, **fsdp_kwargs)
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
return fsdp_model
|
|
|
|
|
|
class NonUniformReqGradNWM(NestedWrappedModule):
|
|
def __init__(
|
|
self,
|
|
group: dist.ProcessGroup,
|
|
wrap_fsdp: bool,
|
|
device_init_mode: DEVICEInitMode,
|
|
deterministic: bool,
|
|
**fsdp_kwargs,
|
|
):
|
|
super(NestedWrappedModule, self).__init__()
|
|
# This `__init__` only differs from `NestedWrappedModule.__init__` in that
|
|
# the last two `nn.Linear` layers are FSDP wrapped in a `nn.Sequential`
|
|
# container. This arrangement results in all elements of the last two parameters
|
|
# residing on a single rank. Freezing all parameters except those two allows us
|
|
# to verify that `ShardedGradScaler` accommodates situations where some ranks
|
|
# have no (non-zero sized) parameter shards.
|
|
self.rank = group.rank()
|
|
self.world_size = group.size()
|
|
move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE
|
|
|
|
def _maybe_wrap(layer):
|
|
if wrap_fsdp:
|
|
return FSDP(layer, group, **fsdp_kwargs)
|
|
return layer
|
|
|
|
if deterministic:
|
|
torch.manual_seed(0)
|
|
self.module = nn.Sequential(
|
|
_move_to_device(nn.Linear(8, 4), move_to_device),
|
|
_maybe_wrap(
|
|
nn.Sequential(
|
|
_maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)),
|
|
_move_to_device(nn.Linear(16, 16), move_to_device),
|
|
),
|
|
),
|
|
_maybe_wrap(
|
|
nn.Sequential(
|
|
_move_to_device(nn.Linear(16, 4), move_to_device),
|
|
_move_to_device(nn.Linear(4, 8), move_to_device),
|
|
),
|
|
),
|
|
)
|
|
|
|
@staticmethod
|
|
def _set_nonuniform_req_grad(model, req_grad_mask) -> None:
|
|
for n, p in model.named_parameters():
|
|
if not re.match(req_grad_mask, n):
|
|
p.requires_grad_(False)
|
|
|
|
@staticmethod
|
|
def init(
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
):
|
|
"""
|
|
Initializes a :class:`NestedWrappedModule` instance, but unlike
|
|
:meth:`NestedWrappedModule.init`, it wraps a second :class:`torch.nn.Sequential`
|
|
container to enable the desired non-uniform ``requires_grad``
|
|
``use_orig_params=True`` tests. For both ``RECURSIVE`` and ``NO_FSDP``
|
|
init modes, freezes all parameters except the last two to validate
|
|
``ShardedGradScaler`` support for ranks with no (non-zero sized) local shards in
|
|
FSDP ``use_orig_params=True`` mode.
|
|
"""
|
|
# The parameters that should remain unfrozen are in `module.2.1`. The regex
|
|
# pattern below matches the relevant parameter names both with and without
|
|
# an interstitial FSDP module indicator (`_fsdp_wrapped_module`) present.
|
|
req_grad_pattern = re.compile(r"module\.2.*\.1.*")
|
|
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
|
ddp_model = NonUniformReqGradNWM(
|
|
group,
|
|
wrap_fsdp=False,
|
|
device_init_mode=device_init_mode,
|
|
deterministic=deterministic,
|
|
)
|
|
NonUniformReqGradNWM._set_nonuniform_req_grad(ddp_model, req_grad_pattern)
|
|
return ddp_model
|
|
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
|
if fsdp_kwargs is None:
|
|
fsdp_kwargs = {}
|
|
fsdp_model = NonUniformReqGradNWM(
|
|
group,
|
|
wrap_fsdp=True,
|
|
device_init_mode=device_init_mode,
|
|
deterministic=deterministic,
|
|
**fsdp_kwargs,
|
|
)
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
NonUniformReqGradNWM._set_nonuniform_req_grad(fsdp_model, req_grad_pattern)
|
|
return fsdp_model
|
|
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
|
|
|
|
|
class ModuleWithDelay(FSDPTestModel):
|
|
"""This class wraps a :class:`FSDPTestModel` to optionally add a delay
|
|
after computing the loss and/or before the gradient reduction."""
|
|
|
|
def __init__(
|
|
self,
|
|
module: nn.Module,
|
|
delay_after_loss_ms: int,
|
|
delay_before_reduction_ms: int,
|
|
):
|
|
super().__init__()
|
|
self.delay_after_loss_ms = delay_after_loss_ms
|
|
self.delay_before_reduction_ms = delay_before_reduction_ms
|
|
self.module = module
|
|
|
|
def get_input(self, device):
|
|
return self.module.get_input(device)
|
|
|
|
def forward(self, x):
|
|
return self.module(x)
|
|
|
|
def get_loss(self, input, output):
|
|
loss = self.module.get_loss(input, output)
|
|
if self.delay_after_loss_ms > 0:
|
|
if TEST_HPU:
|
|
time.sleep(self.delay_before_reduction_ms / 1000)
|
|
elif TEST_CUDA:
|
|
torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms()))
|
|
|
|
return loss
|
|
|
|
def run_backward(self, loss):
|
|
orig_reduce_scatter = torch.distributed.reduce_scatter_tensor
|
|
|
|
def _delayed_reduce_scatter(*args, **kwargs):
|
|
if self.delay_before_reduction_ms > 0:
|
|
if TEST_CUDA:
|
|
torch.cuda._sleep(
|
|
int(self.delay_before_reduction_ms * get_cycles_per_ms())
|
|
)
|
|
elif TEST_HPU:
|
|
time.sleep(self.delay_before_reduction_ms / 1000)
|
|
return orig_reduce_scatter(*args, **kwargs)
|
|
|
|
with mock.patch(
|
|
"torch.distributed.reduce_scatter_tensor", _delayed_reduce_scatter
|
|
):
|
|
self.module.run_backward(loss)
|
|
|
|
@staticmethod
|
|
def init(
|
|
module_class: Type[FSDPTestModel],
|
|
*model_args: Any,
|
|
delay_after_loss_ms: int,
|
|
delay_before_reduction_ms: int,
|
|
**model_kwargs: Any,
|
|
):
|
|
"""
|
|
Args:
|
|
module_class (Type[FSDPTestModel]): Wrapped module class to which
|
|
to add delays.
|
|
model_args: Positional arguments forwarded to the ``module_class``
|
|
``init()``.
|
|
delay_after_loss_ms (int): Delay after computing the loss/before
|
|
the optimizer step (in ms).
|
|
delay_before_reduction_ms (int): Delay before reduce-scattering
|
|
gradients (in ms).
|
|
model_kwargs: Keyword arguments forwarded to the ``module_class``
|
|
``init()``.
|
|
"""
|
|
return ModuleWithDelay(
|
|
module_class.init(*model_args, **model_kwargs),
|
|
delay_after_loss_ms,
|
|
delay_before_reduction_ms,
|
|
)
|
|
|
|
|
|
class NestedWrappedModuleWithDelay(ModuleWithDelay):
|
|
@staticmethod
|
|
def init( # type: ignore[override]
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode = DEVICEInitMode.DEVICE_AFTER,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
delay_after_loss_ms: int = 0,
|
|
delay_before_reduction_ms: int = 0,
|
|
):
|
|
return ModuleWithDelay.init(
|
|
NestedWrappedModule,
|
|
group=group,
|
|
fsdp_init_mode=fsdp_init_mode,
|
|
device_init_mode=device_init_mode,
|
|
fsdp_kwargs=fsdp_kwargs,
|
|
deterministic=deterministic,
|
|
delay_after_loss_ms=delay_after_loss_ms,
|
|
delay_before_reduction_ms=delay_before_reduction_ms,
|
|
)
|
|
|
|
|
|
class DummyDDP(nn.Module):
|
|
def __init__(self, module):
|
|
super().__init__()
|
|
self.module = module
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.module(*args, **kwargs)
|
|
|
|
|
|
class MixtureOfExperts(NestedWrappedModule):
|
|
def __init__(
|
|
self,
|
|
group: dist.ProcessGroup,
|
|
wrap_fsdp: bool,
|
|
device_init_mode: DEVICEInitMode,
|
|
delay_before_free_ms: int,
|
|
deterministic: bool,
|
|
**fsdp_kwargs,
|
|
):
|
|
super().__init__(
|
|
group=group,
|
|
wrap_fsdp=wrap_fsdp,
|
|
device_init_mode=device_init_mode,
|
|
deterministic=deterministic,
|
|
)
|
|
self.group = group
|
|
self.delay_before_free_ms = delay_before_free_ms
|
|
self.wrap_fsdp = wrap_fsdp
|
|
self.move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE
|
|
if deterministic:
|
|
# Give each rank different expert parameters
|
|
torch.manual_seed(42 + self.rank)
|
|
d_expert = 23
|
|
d_shared = 12
|
|
d_input = 8
|
|
expert = _move_to_device(nn.Linear(d_expert, d_shared), self.move_to_device)
|
|
|
|
self.num_expert_params = sum(p.numel() for p in expert.parameters())
|
|
for p in expert.parameters():
|
|
p.expert = True # type: ignore[attr-defined]
|
|
|
|
if deterministic:
|
|
# Keep all other parameters the same across ranks
|
|
torch.manual_seed(0)
|
|
|
|
shared = _move_to_device(nn.Linear(d_shared, d_expert), self.move_to_device)
|
|
|
|
if wrap_fsdp:
|
|
# we create a process group of size 1 for the expert params
|
|
expert_group = torch.distributed.new_group(
|
|
[group.rank()]
|
|
) # world size 1 means no shard
|
|
expert = FSDP(expert, expert_group, **fsdp_kwargs) # type: ignore[assignment]
|
|
shared = FSDP(shared, group, **fsdp_kwargs) # type: ignore[assignment]
|
|
|
|
self.module = nn.Sequential(
|
|
_move_to_device(nn.Linear(d_input, d_shared), self.move_to_device),
|
|
shared,
|
|
expert,
|
|
_move_to_device(nn.Linear(d_shared, d_input), self.move_to_device),
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.delay_before_free_ms > 0:
|
|
expert = self.module[2]
|
|
if isinstance(expert, FSDP):
|
|
orig_reshard = torch.distributed.fsdp._runtime_utils._reshard
|
|
|
|
def _delayed_reshard(*args, **kwargs):
|
|
if TEST_CUDA:
|
|
torch.cuda._sleep(
|
|
int(self.delay_before_free_ms * get_cycles_per_ms())
|
|
)
|
|
elif TEST_HPU:
|
|
time.sleep(self.delay_before_free_ms / 1000)
|
|
|
|
return orig_reshard(*args, **kwargs)
|
|
|
|
# This patch covers any `import torch..._reshard` uses.
|
|
with mock.patch(
|
|
"torch.distributed.fsdp._runtime_utils._reshard", _delayed_reshard
|
|
):
|
|
return self.module(x)
|
|
|
|
return self.module(x)
|
|
|
|
def run_backward(self, loss):
|
|
loss.backward()
|
|
# Manually reduce gradients if not wrapped in FullyShardedDataParallel
|
|
if not self.wrap_fsdp:
|
|
with torch.no_grad():
|
|
for p in self.parameters():
|
|
if hasattr(p, "expert"):
|
|
continue # these params don't need grad reduction
|
|
if p.grad is not None:
|
|
p.grad.div_(self.world_size)
|
|
torch.distributed.all_reduce(p.grad, group=self.group)
|
|
|
|
@staticmethod
|
|
def init(
|
|
group: dist.ProcessGroup,
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
fsdp_kwargs: Optional[Dict[str, Any]] = None,
|
|
deterministic: bool = False,
|
|
delay_before_free_ms: int = 0,
|
|
):
|
|
"""
|
|
Initializes a :class:`MixtureOfExperts` instance.
|
|
|
|
Args:
|
|
fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap
|
|
any modules with FSDP. If ``RECURSIVE``, then wraps some nested
|
|
modules with FSDP, including the expert and shared layers, but
|
|
not the top-level module. The model may later be wrapped with a
|
|
top-level FSDP external to this method if desired.
|
|
device_init_mode (DEVICEInitMode): Determines model movement to DEVICE.
|
|
fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments
|
|
forwarded to the FSDP constructor.
|
|
deterministic (bool): Whether to make the model deterministic
|
|
across constructions.
|
|
delay_before_free_ms (int): Delay before resharding expert
|
|
parameters in the forward pass (in ms).
|
|
"""
|
|
if fsdp_kwargs is None:
|
|
fsdp_kwargs = {}
|
|
if fsdp_init_mode == FSDPInitMode.NO_FSDP:
|
|
return MixtureOfExperts(
|
|
group,
|
|
wrap_fsdp=False,
|
|
device_init_mode=device_init_mode,
|
|
delay_before_free_ms=delay_before_free_ms,
|
|
deterministic=deterministic,
|
|
)
|
|
elif fsdp_init_mode == FSDPInitMode.RECURSIVE:
|
|
# Does not wrap with top-level FSDP
|
|
fsdp_model = MixtureOfExperts(
|
|
group,
|
|
wrap_fsdp=True,
|
|
device_init_mode=device_init_mode,
|
|
delay_before_free_ms=delay_before_free_ms,
|
|
deterministic=deterministic,
|
|
**fsdp_kwargs,
|
|
)
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
return fsdp_model
|
|
raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}")
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
device: Optional[torch.device] = None,
|
|
*,
|
|
bias: bool = True,
|
|
with_buffer: bool = False,
|
|
dim_multiplier: int = 4,
|
|
):
|
|
super().__init__()
|
|
self.in_proj = nn.Linear(dim, dim_multiplier * dim, device=device, bias=bias)
|
|
self.out_proj = nn.Linear(dim_multiplier * dim, dim, device=device, bias=bias)
|
|
if with_buffer:
|
|
self.register_buffer("buffer", torch.randn((dim,), device=device))
|
|
else:
|
|
self.buffer = None
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
z = self.in_proj(x)
|
|
z = F.relu(z)
|
|
z = self.out_proj(z)
|
|
z = F.relu(z)
|
|
if self.buffer is not None:
|
|
z = z + self.buffer
|
|
return z
|
|
|
|
def reset_parameters(self):
|
|
if self.buffer is not None:
|
|
torch.nn.init.normal_(self.buffer)
|
|
|
|
|
|
class MLPStack(nn.Sequential):
|
|
def __init__(self, mlp_dim: int, *, with_seq_parallel: bool = False):
|
|
modules: List[nn.Module] = [
|
|
# Use multiplier of 3 to exercise uneven case
|
|
MLP(mlp_dim, dim_multiplier=3),
|
|
MLP(mlp_dim),
|
|
MLP(mlp_dim, dim_multiplier=3),
|
|
]
|
|
if with_seq_parallel:
|
|
modules.append(nn.LayerNorm(mlp_dim, bias=False))
|
|
super().__init__(*modules)
|
|
self.with_seq_parallel = with_seq_parallel
|
|
|
|
def parallelize(
|
|
self,
|
|
tp_mesh: DeviceMesh,
|
|
dp_mesh: DeviceMesh,
|
|
use_activation_checkpointing: bool,
|
|
**fsdp_kwargs,
|
|
) -> "MLPStack":
|
|
parallelize_plan = {
|
|
# Pass `use_local_output=False` to keep as DTensor to preserve
|
|
# uneven activation dims
|
|
"0.in_proj": ColwiseParallel(use_local_output=False),
|
|
"0.out_proj": RowwiseParallel(use_local_output=False),
|
|
"1.in_proj": ColwiseParallel(use_local_output=False),
|
|
"1.out_proj": RowwiseParallel(use_local_output=False),
|
|
"2.in_proj": ColwiseParallel(use_local_output=False),
|
|
"2.out_proj": RowwiseParallel(output_layouts=Shard(1))
|
|
if self.with_seq_parallel
|
|
else RowwiseParallel(),
|
|
}
|
|
if self.with_seq_parallel:
|
|
parallelize_plan["3"] = SequenceParallel(sequence_dim=1)
|
|
parallelize_module(self, device_mesh=tp_mesh, parallelize_plan=parallelize_plan)
|
|
for module in self:
|
|
if isinstance(module, nn.LayerNorm):
|
|
continue
|
|
if use_activation_checkpointing:
|
|
checkpoint(module)
|
|
fully_shard(module, mesh=dp_mesh, **fsdp_kwargs)
|
|
fully_shard(self, mesh=dp_mesh, **fsdp_kwargs)
|
|
return self
|
|
|
|
|
|
class DoubleLinear(nn.Module):
|
|
"""
|
|
This can be used for returning multiple outputs from a module
|
|
(``use_second_linear=True``) or for having an unused module (``False``).
|
|
"""
|
|
|
|
def __init__(self, dim: int, use_second_linear: bool = True):
|
|
super().__init__()
|
|
self.lin1 = nn.Linear(dim, dim)
|
|
self.lin2 = nn.Linear(dim, dim)
|
|
self.relu = nn.ReLU()
|
|
self.use_second_linear = use_second_linear
|
|
|
|
def forward(
|
|
self, x: torch.Tensor
|
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]:
|
|
if self.use_second_linear:
|
|
return self.relu(self.lin1(x)), self.relu(self.lin2(x))
|
|
return self.relu(self.lin1(x))
|
|
|
|
|
|
# NOTE: For these patch methods, if we want safety under multi-threading (e.g.
|
|
# when using multi-threaded process group), then we want:
|
|
# (1) a barrier immediately after reading the original value to ensure that all
|
|
# threads see the same original value
|
|
# (2) a barrier immediately before restoring the original value to ensure that
|
|
# all threads use the patched value inside the context
|
|
@contextlib.contextmanager
|
|
def patch_all_gather(new_all_gather_into_tensor: Callable):
|
|
orig_all_gather = dist.all_gather_into_tensor
|
|
dist.barrier()
|
|
dist.all_gather_into_tensor = new_all_gather_into_tensor
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
dist.all_gather_into_tensor = orig_all_gather
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def patch_reduce_scatter(new_reduce_scatter_tensor: Callable):
|
|
orig_reduce_scatter = dist.reduce_scatter_tensor
|
|
dist.barrier()
|
|
dist.reduce_scatter_tensor = new_reduce_scatter_tensor
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
dist.reduce_scatter_tensor = orig_reduce_scatter
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def patch_all_reduce(new_all_reduce: Callable):
|
|
orig_all_reduce = dist.all_reduce
|
|
dist.barrier()
|
|
dist.all_reduce = new_all_reduce
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
dist.all_reduce = orig_all_reduce
|
|
|
|
|
|
@no_type_check
|
|
@contextlib.contextmanager
|
|
def patch_unshard(new_unshard: Callable):
|
|
orig_unshard = FSDPParamGroup.unshard
|
|
dist.barrier()
|
|
FSDPParamGroup.unshard = new_unshard
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
FSDPParamGroup.unshard = orig_unshard
|
|
|
|
|
|
@no_type_check
|
|
@contextlib.contextmanager
|
|
def patch_reshard(new_reshard: Callable):
|
|
orig_reshard = FSDPParamGroup.reshard
|
|
dist.barrier()
|
|
FSDPParamGroup.reshard = new_reshard
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
FSDPParamGroup.reshard = orig_reshard
|
|
|
|
|
|
@no_type_check
|
|
@contextlib.contextmanager
|
|
def patch_post_backward(new_post_backward: Callable):
|
|
orig_post_backward = FSDPParamGroup.post_backward
|
|
dist.barrier()
|
|
FSDPParamGroup.post_backward = new_post_backward
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
FSDPParamGroup.post_backward = orig_post_backward
|
|
|
|
|
|
@no_type_check
|
|
@contextlib.contextmanager
|
|
def patch_register_post_backward_hook_backward(new_backward: Callable):
|
|
orig_backward = RegisterPostBackwardFunction.backward
|
|
dist.barrier()
|
|
RegisterPostBackwardFunction.backward = new_backward
|
|
try:
|
|
yield
|
|
finally:
|
|
dist.barrier()
|
|
RegisterPostBackwardFunction.backward = orig_backward
|
|
|
|
|
|
def reduce_scatter_with_assert(
|
|
cls,
|
|
orig_reduce_scatter: Callable,
|
|
assert_fn: Callable, # `assert_fn(output: Tensor)`
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
):
|
|
if len(args) > 0:
|
|
output = args[0]
|
|
elif "output" in kwargs:
|
|
output = kwargs["output"]
|
|
else:
|
|
raise AssertionError(
|
|
f"Cannot get reduce-scatter output from\nargs: {args}\nkwargs: {kwargs}"
|
|
)
|
|
assert_fn(output)
|
|
return orig_reduce_scatter(*args, **kwargs)
|
|
|
|
|
|
def check_sharded_parity(
|
|
cls, # unit test class
|
|
replicated_module: nn.Module,
|
|
sharded_module: nn.Module,
|
|
prefixes_to_ignore: Tuple[str, ...] = (),
|
|
):
|
|
for (replicated_name, replicated_param), (sharded_name, sharded_param) in zip(
|
|
replicated_module.named_parameters(), sharded_module.named_parameters()
|
|
):
|
|
clean_sharded_name = sharded_name
|
|
for prefix in prefixes_to_ignore:
|
|
clean_sharded_name = clean_sharded_name.replace(prefix, "")
|
|
cls.assertEqual(replicated_name, clean_sharded_name)
|
|
cls.assertIsInstance(sharded_param, DTensor)
|
|
assert isinstance(sharded_param, DTensor) # mypy
|
|
mesh, placements = sharded_param.device_mesh, sharded_param.placements
|
|
if tuple(placements) == (Shard(0), Shard(0)):
|
|
raise AssertionError(
|
|
"FSDP's (Shard(0), Shard(0)) layout differs from distribute_tensor(), "
|
|
"so we cannot check for equality using it"
|
|
)
|
|
sharded_ref_param = distribute_tensor(replicated_param, mesh, placements)
|
|
cls.assertEqual(sharded_param.to_local(), sharded_ref_param.to_local())
|
|
if replicated_param.grad is None:
|
|
cls.assertIsNone(sharded_param.grad)
|
|
continue
|
|
cls.assertIsNotNone(sharded_param.grad)
|
|
sharded_ref_grad = distribute_tensor(replicated_param.grad, mesh, placements)
|
|
cls.assertIsInstance(sharded_param.grad, DTensor)
|
|
assert isinstance(sharded_param.grad, DTensor) # mypy
|
|
cls.assertEqual(sharded_param.grad.to_local(), sharded_ref_grad.to_local())
|
|
|
|
|
|
class FSDPTestMultiThread(MultiThreadedTestCase):
|
|
@property
|
|
def world_size(self):
|
|
return DEVICE_COUNT
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self._spawn_threads()
|
|
|
|
def run_subtests(self, *args, **kwargs):
|
|
return run_subtests(self, *args, **kwargs)
|
|
|
|
def perThreadSetUp(self):
|
|
torch._dynamo.reset()
|
|
|
|
def perThreadTearDown(self):
|
|
torch._dynamo.reset()
|
|
|
|
|
|
class FSDPTest(MultiProcessTestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
# Set TORCH_NCCL_DESYNC_DEBUG=0 to disable the NCCL `workCleanupLoop()`,
|
|
# which can cause unit test flakiness:
|
|
# https://github.com/pytorch/pytorch/issues/90848
|
|
os.environ["TORCH_NCCL_DESYNC_DEBUG"] = "0"
|
|
self._spawn_processes()
|
|
|
|
@property
|
|
def world_size(self):
|
|
return DEVICE_COUNT
|
|
|
|
@property
|
|
def process_group(self):
|
|
return dist.distributed_c10d._get_default_group()
|
|
|
|
@property
|
|
def init_method(self):
|
|
return f"{FILE_SCHEMA}{self.file_name}"
|
|
|
|
def _check_cpu_offload(self, fsdp_model, cpu_offload):
|
|
self.assertEqual(cpu_offload, fsdp_model.cpu_offload)
|
|
|
|
def _check_backward_prefetch(self, fsdp_model, backward_prefetch):
|
|
self.assertEqual(backward_prefetch, fsdp_model.backward_prefetch)
|
|
|
|
def _check_forward_prefetch(self, fsdp_model, forward_prefetch):
|
|
self.assertEqual(forward_prefetch, fsdp_model.forward_prefetch)
|
|
|
|
def run_subtests(self, *args, **kwargs):
|
|
return run_subtests(self, *args, **kwargs)
|
|
|
|
@classmethod
|
|
def _run(cls, rank, test_name, file_name, pipe, **kwargs):
|
|
self = cls(test_name)
|
|
self.rank = rank
|
|
self.file_name = file_name
|
|
fake_pg = kwargs.get("fake_pg", False)
|
|
|
|
print(f"dist init r={self.rank}, world={self.world_size}")
|
|
|
|
# Specify gloo backend to make 'init_process_group()' succeed,
|
|
# Actual tests will be skipped if there is no enough GPUs.
|
|
try:
|
|
if fake_pg:
|
|
store = torch.testing._internal.distributed.fake_pg.FakeStore()
|
|
dist.init_process_group(
|
|
backend="fake",
|
|
world_size=self.world_size,
|
|
rank=rank,
|
|
store=store,
|
|
)
|
|
else:
|
|
dist.init_process_group(
|
|
init_method=self.init_method,
|
|
backend=DISTRIBUTED_BACKEND,
|
|
world_size=int(self.world_size),
|
|
rank=self.rank,
|
|
)
|
|
except RuntimeError as e:
|
|
if "recompile" in e.args[0]:
|
|
sys.exit(TEST_SKIPS["backend_unavailable"].exit_code)
|
|
|
|
raise
|
|
|
|
device_ids = None
|
|
device_id = self.rank % DEVICE_COUNT
|
|
if TEST_CUDA:
|
|
torch.cuda.set_device(device_id)
|
|
device_ids = [device_id]
|
|
|
|
# Execute barrier prior to running test to ensure that every process
|
|
# has finished initialization and that the following test
|
|
# immediately exiting due to a skip doesn't cause flakiness.
|
|
dist.barrier(device_ids=device_ids)
|
|
|
|
torch._dynamo.reset()
|
|
self.run_test(test_name, pipe)
|
|
torch._dynamo.reset()
|
|
|
|
dist.barrier(device_ids=device_ids)
|
|
|
|
dist.destroy_process_group()
|
|
|
|
def _train_for_several_steps(
|
|
self,
|
|
model: nn.Module,
|
|
num_steps: int,
|
|
autocast: bool,
|
|
lr: float = 0.01,
|
|
fsdp_cpu_offload: Optional[CPUOffload] = None,
|
|
save_model: bool = False,
|
|
mixed_precision: Optional[MixedPrecision] = None,
|
|
enable_sharded_grad_scaler: bool = False,
|
|
use_pure_fp16: bool = False,
|
|
sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
|
|
):
|
|
cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params
|
|
|
|
model_device = next(model.parameters()).device
|
|
if sharded_grad_scaler_kwargs is None:
|
|
sharded_grad_scaler_kwargs = {}
|
|
sharded_grad_scaler = ShardedGradScaler(
|
|
enabled=enable_sharded_grad_scaler, **sharded_grad_scaler_kwargs
|
|
)
|
|
# use SGD with momentum instead of Adam, since Adam is scale invariant
|
|
# and this makes it bad for tests
|
|
optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
|
|
for _ in range(num_steps):
|
|
optim.zero_grad()
|
|
with torch.amp.autocast(DEVICE_TYPE, enabled=autocast):
|
|
# Inputs always cuda regardless of cpu offloading, or model.device
|
|
input = model.module.get_input(torch.device(DEVICE_TYPE))
|
|
if use_pure_fp16 or (mixed_precision and not isinstance(model, FSDP)):
|
|
if isinstance(input, torch.Tensor):
|
|
input = input.half()
|
|
else:
|
|
input = tuple(x.half() for x in input)
|
|
output = model(*input)
|
|
# Post-forward, if CPU offloading model param should be on CPU.
|
|
if (
|
|
cpu_offload_params
|
|
and isinstance(model, FSDP)
|
|
# If not resharding after forward, the parameters are still
|
|
# exposed as unsharded views into the GPU flat parameter
|
|
and model.sharding_strategy
|
|
not in NO_RESHARD_AFTER_FORWARD_STRATEGIES
|
|
):
|
|
for p in model.parameters():
|
|
# Params should always be on CPU
|
|
self.assertEqual(p.device, torch.device("cpu"))
|
|
|
|
loss = model.module.get_loss(input, output).to(model_device)
|
|
loss = sharded_grad_scaler.scale(loss)
|
|
|
|
if not mixed_precision and not use_pure_fp16:
|
|
assert (
|
|
loss.dtype == torch.float32
|
|
), "loss data type should be float32, as the original \
|
|
parameter data type is float32."
|
|
else:
|
|
if use_pure_fp16:
|
|
self.assertEqual(loss.dtype, torch.float16)
|
|
# FSDP loss is fp16, DDP AMP loss is fp32
|
|
elif isinstance(model, FSDP):
|
|
assert mixed_precision is not None # mypy
|
|
self.assertEqual(loss.dtype, mixed_precision.param_dtype)
|
|
else:
|
|
self.assertEqual(loss.dtype, torch.float32)
|
|
model.module.run_backward(loss)
|
|
# Post-backward, if CPU offloading model params should be on CPU.
|
|
if cpu_offload_params and isinstance(model, FSDP):
|
|
for p in model.parameters():
|
|
# Params should always be on CPU
|
|
self.assertEqual(p.device, torch.device("cpu"))
|
|
# Unscale the gradients and step
|
|
sharded_grad_scaler.step(optim)
|
|
# Update the scale factor
|
|
sharded_grad_scaler.update()
|
|
# if save_model, simulate save + load.
|
|
if save_model:
|
|
state_dict = {k: v.clone() for k, v in model.state_dict().items()}
|
|
# Zero params, if save/load state_dict did not work properly, this
|
|
# would break the parity test with DDP.
|
|
_zero_model(model)
|
|
model.load_state_dict(state_dict)
|
|
|
|
if isinstance(model, FSDP):
|
|
model._assert_state(TrainingState.IDLE)
|
|
return loss.detach() # type: ignore[possibly-undefined]
|
|
|
|
def _test_fsdp_parity(
|
|
self,
|
|
model_class: Type[FSDPTestModel],
|
|
fsdp_init_mode: FSDPInitMode,
|
|
device_init_mode: DEVICEInitMode,
|
|
ref_init_fn: Optional[Callable] = None,
|
|
num_iters: int = 2,
|
|
save_model: bool = True,
|
|
cpu_offload: CPUOffload = CPUOffload(),
|
|
backward_prefetch: Optional[BackwardPrefetch] = None,
|
|
sharding_strategy: Optional[ShardingStrategy] = None,
|
|
mixed_precision: Optional[MixedPrecision] = None,
|
|
forward_prefetch: bool = False,
|
|
use_orig_params: bool = False,
|
|
enable_sharded_grad_scaler: bool = False,
|
|
use_pure_fp16: bool = False,
|
|
init_kwargs: Optional[Dict[str, Any]] = None,
|
|
sharded_grad_scaler_kwargs: Optional[Dict[str, Any]] = None,
|
|
**fsdp_kwargs,
|
|
):
|
|
"""
|
|
Tests FSDP training against a reference, which defaults to DDP but
|
|
may be customized with ``ref_init_fn``.
|
|
|
|
Args:
|
|
model_class (Type[FSDPTestModel]): A model class that inherits from
|
|
``FSDPTestModel``, which defines the expected interface.
|
|
fsdp_init_mode (FSDPInitMode): The mode to initialize the
|
|
FSDP-wrapped model. This should not be ``NO_FSDP``.
|
|
ref_init_fn (Optional[Callable]): A callable to invoke that wraps a
|
|
non-wrapped model to construct the reference model, where this
|
|
wrapper should provide data parallel semantics. If ``None``,
|
|
then the callable defaults to the DDP constructor.
|
|
"""
|
|
assert (
|
|
fsdp_init_mode != FSDPInitMode.NO_FSDP
|
|
), "Expects an FSDP init mode that wraps with FSDP"
|
|
if init_kwargs is None:
|
|
init_kwargs = {}
|
|
lr = 1e-2
|
|
rank = self.process_group.rank()
|
|
# Establish reference behavior with DDP
|
|
model = model_class.init(
|
|
self.process_group,
|
|
FSDPInitMode.NO_FSDP,
|
|
DEVICEInitMode.DEVICE_BEFORE,
|
|
deterministic=True,
|
|
**init_kwargs,
|
|
)
|
|
if ref_init_fn is None:
|
|
ref_model = DDP(model, device_ids=[rank], output_device=rank)
|
|
else:
|
|
ref_model = ref_init_fn(model)
|
|
if use_pure_fp16:
|
|
ref_model = ref_model.half()
|
|
ref_loss = self._train_for_several_steps(
|
|
ref_model,
|
|
num_iters,
|
|
autocast=mixed_precision is not None,
|
|
lr=lr,
|
|
fsdp_cpu_offload=cpu_offload,
|
|
mixed_precision=mixed_precision,
|
|
enable_sharded_grad_scaler=enable_sharded_grad_scaler,
|
|
use_pure_fp16=use_pure_fp16,
|
|
sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
|
|
)
|
|
ddp_params = list(ref_model.parameters())
|
|
# Check against FSDP behavior
|
|
fsdp_kwargs.update(
|
|
{
|
|
"cpu_offload": cpu_offload,
|
|
"backward_prefetch": backward_prefetch,
|
|
"sharding_strategy": sharding_strategy,
|
|
"mixed_precision": mixed_precision,
|
|
"forward_prefetch": forward_prefetch,
|
|
"use_orig_params": use_orig_params,
|
|
}
|
|
)
|
|
try:
|
|
fsdp_model = model_class.init(
|
|
self.process_group,
|
|
fsdp_init_mode,
|
|
device_init_mode,
|
|
fsdp_kwargs,
|
|
deterministic=True,
|
|
**init_kwargs,
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(f"Initializing {model_class} raised error {str(e)}") from e
|
|
if not isinstance(fsdp_model, FSDP):
|
|
# Enforce that we wrap with top-level FSDP since we are comparing
|
|
# assuming a data parallel reference and some test models may not
|
|
# do so in their `init()` method
|
|
fsdp_model = FSDP(fsdp_model, self.process_group, **fsdp_kwargs)
|
|
if use_pure_fp16:
|
|
# Change the model parameter dtype after FSDP initialization
|
|
fsdp_model = fsdp_model.half()
|
|
if device_init_mode == DEVICEInitMode.DEVICE_AFTER:
|
|
fsdp_model = fsdp_model.to(DEVICE_TYPE)
|
|
offload_params = cpu_offload is not None and cpu_offload.offload_params
|
|
# Offloading parameters with `DEVICE_AFTER` should raise an error during
|
|
# lazy initialization due to the parameter devices not being CPU;
|
|
# otherwise, all parameter devices should be CPU
|
|
expects_device_error = (
|
|
offload_params and device_init_mode == DEVICEInitMode.DEVICE_AFTER
|
|
)
|
|
expects_cpu_device = (
|
|
offload_params and device_init_mode != DEVICEInitMode.DEVICE_AFTER
|
|
)
|
|
if expects_cpu_device:
|
|
cpu_device = torch.device("cpu")
|
|
for param in fsdp_model.parameters():
|
|
self.assertEqual(param.device, cpu_device)
|
|
context = (
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"An FSDP-managed module with parameter CPU offloading enabled "
|
|
"has parameters on cuda",
|
|
)
|
|
if expects_device_error
|
|
else nullcontext()
|
|
)
|
|
with context:
|
|
fsdp_loss = self._train_for_several_steps(
|
|
fsdp_model,
|
|
num_iters,
|
|
autocast=False,
|
|
lr=lr,
|
|
fsdp_cpu_offload=cpu_offload,
|
|
save_model=save_model,
|
|
mixed_precision=mixed_precision,
|
|
enable_sharded_grad_scaler=enable_sharded_grad_scaler,
|
|
use_pure_fp16=use_pure_fp16,
|
|
sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs,
|
|
)
|
|
# No need to check for parameter and loss parity if expecting an error
|
|
if expects_device_error:
|
|
return
|
|
# Check parameter devices are CPU if offloading to CPU before calling
|
|
# `get_full_params()`, which will cast the parameters to FP32
|
|
if offload_params:
|
|
cpu_device = torch.device("cpu")
|
|
for param in fsdp_model.parameters():
|
|
self.assertEqual(param.device, cpu_device)
|
|
fsdp_loss = fsdp_loss.to(DEVICE_TYPE)
|
|
fsdp_unsharded_params = get_full_params(fsdp_model)
|
|
# Do not check dtype since the reference DDP loss may not be the same
|
|
# dtype as the FSDP loss in the case of mixed precision
|
|
torch.testing.assert_close(ref_loss, fsdp_loss, check_dtype=False)
|
|
# Do not check for parameter parity if using mixed precision since (1)
|
|
# the DDP parameters are in FP16 (from `half()`) while the FSDP
|
|
# parameters are in FP32 (from `summon_full_params()`) and (2) DDP runs
|
|
# the optimizer in FP16 while FSDP runs it in FP32
|
|
# TODO: Disable checking the parameters for pure FP16 due to floating
|
|
# point inaccuracy. Note that this means that the backward pass is not
|
|
# checked: https://github.com/pytorch/pytorch/issues/90784
|
|
if mixed_precision is None and not use_pure_fp16:
|
|
self.assertEqual(
|
|
ddp_params,
|
|
fsdp_unsharded_params,
|
|
exact_device=True,
|
|
msg="FSDP did not match DDP",
|
|
)
|
|
|
|
|
|
def test_compiled_fsdp(compile_compute_on_module: Optional[type] = None):
|
|
def fully_shard_with_compiled_compute(*args, **kwargs):
|
|
torch.distributed._composable.fsdp.fully_shard(*args, **kwargs) # type: ignore[operator]
|
|
if compile_compute_on_module is None or isinstance(
|
|
args[0], compile_compute_on_module
|
|
):
|
|
args[0].compile()
|
|
|
|
class FullyShardMode(Enum):
|
|
EAGER = auto()
|
|
COMPILED_COMPUTE = auto()
|
|
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
original_fully_shard = torch.distributed._composable.fsdp.fully_shard
|
|
for mode in FullyShardMode:
|
|
if mode != FullyShardMode.EAGER and not has_triton():
|
|
warnings.warn("Inductor on GPU needs Triton and recent GPU arch")
|
|
continue
|
|
# barrier to ensure thread reading the same value
|
|
original_skip_fsdp_hooks = torch._dynamo.config.skip_fsdp_hooks
|
|
original_compile_threads = torch._inductor.config.compile_threads
|
|
torch.distributed.barrier()
|
|
|
|
if mode == FullyShardMode.EAGER:
|
|
fully_shard_patch = original_fully_shard
|
|
elif mode == FullyShardMode.COMPILED_COMPUTE:
|
|
torch._dynamo.config.skip_fsdp_hooks = True
|
|
torch._inductor.config.compile_threads = 1
|
|
fully_shard_patch = fully_shard_with_compiled_compute # type: ignore[assignment]
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Need to implement FullyShardMode={mode}"
|
|
)
|
|
|
|
# fully_shard is imported as a global
|
|
# through `from ... import fully_shard`
|
|
func.__globals__[original_fully_shard.__name__] = fully_shard_patch
|
|
func(*args, **kwargs)
|
|
# other threads use patched func before this thread restores
|
|
torch.distributed.barrier()
|
|
func.__globals__[original_fully_shard.__name__] = original_fully_shard
|
|
torch._dynamo.config.skip_fsdp_hooks = original_skip_fsdp_hooks
|
|
torch._inductor.config.compile_threads = original_compile_threads
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
class SkipModule(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.lin = nn.Linear(10, 10, bias=False)
|
|
|
|
def forward(self, x):
|
|
return self.lin(x)
|
|
|
|
|
|
class NestedLinear(nn.Module):
|
|
def __init__(self, fsdp_wrap):
|
|
super().__init__()
|
|
if fsdp_wrap:
|
|
self.nested_linear = wrap(nn.Linear(10, 10, bias=False).to(DEVICE_TYPE))
|
|
else:
|
|
self.nested_linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE)
|
|
|
|
def forward(self, x):
|
|
return self.nested_linear(x)
|
|
|
|
|
|
class SkipModel(nn.Module):
|
|
def __init__(self, double_nest):
|
|
super().__init__()
|
|
self.linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE)
|
|
self.linear_skip = SkipModule().to(DEVICE_TYPE)
|
|
self.nested_linear = wrap(
|
|
NestedLinear(fsdp_wrap=double_nest), device_id=DEVICE_TYPE
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = self.linear_skip(x)
|
|
x = self.nested_linear(x)
|
|
return x
|