Files
pytorch/torch/utils/_python_dispatch.py
Richard Zou 67bd2a31b5 [Reland] Add python mode (#64360)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64360

This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.

Example usage:
```
with enable_python_mode(LoggingTensor):
    z = torch.empty([])
    assert isinstance(z, LoggingTensor)
```

There are quite a few changes that were made to support this.

First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.

Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.

To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.

Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.

There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.

Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.

Test Plan: - new tests

Reviewed By: ezyang

Differential Revision: D30698082

Pulled By: zou3519

fbshipit-source-id: 7094a90eee6aa51f8b71bc4d91cfb6f49e9691f8
2021-09-16 09:02:30 -07:00

35 lines
1.6 KiB
Python

import torch
import contextlib
from typing import Iterator
# Context manager that causes all pytorch operators to dispatch to the passed-in
# type's __torch_dispatch__ function.
# operation that accepts no tensors but returns a tensor.
#
# enable_python_mode is affected by torch._C._DisableTorchDispatch.
#
# NB: Calling an operator inside __torch_dispatch__ does go through
# __torch_dispatch__ again. Please use _DisableTorchDispatch inside
# __torch_dispatch__ to prevent infinite recursion.
#
# TODO: Limitations and things about enable_python_mode we should fix before exposing it:
# - it currently cannot be nested. This should be simple to implement; we need a
# stack of TorchDispatchTypeObjects and the next bullet point.
# - We need a better user-facing api for torch._C._DisableTorchDispatch that
# is able to selectively disable __torch_dispatch__ of a particular class.
# - It doesn't work with the tensor constructors (torch.tensor, torch.Tensor)
# - Better name (see https://github.com/pytorch/pytorch/pull/63496#discussion_r694091694)
@contextlib.contextmanager
def enable_python_mode(cls) -> Iterator[None]:
if not hasattr(cls, '__torch_dispatch__'):
raise ValueError('The class passed to enable_python_mode '
'must have a __torch_dispatch__ classmethod')
if not isinstance(cls, type) or not issubclass(cls, (torch.Tensor,)):
raise ValueError('The argument passed to enable_python_mode '
'must be the type of a Tensor subclass')
torch._C._enter_python_mode(cls)
try:
yield
finally:
torch._C._exit_python_mode()