Files
pytorch/torch/headeronly/util/Half.h

250 lines
9.7 KiB
C++

#pragma once
#include <torch/headeronly/macros/Macros.h>
#include <torch/headeronly/util/bit_cast.h>
#include <torch/headeronly/util/floating_point_utils.h>
#if defined(__cplusplus)
#include <cmath>
#elif !defined(__OPENCL_VERSION__)
#include <math.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstdint>
#include <cstring>
#ifdef __CUDACC__
#include <cuda_fp16.h>
#endif
#ifdef __HIPCC__
#include <hip/hip_fp16.h>
#endif
#if defined(CL_SYCL_LANGUAGE_VERSION)
#include <CL/sycl.hpp> // for SYCL 1.2.1
#elif defined(SYCL_LANGUAGE_VERSION)
#include <sycl/sycl.hpp> // for SYCL 2020
#endif
#if defined(__aarch64__) && !defined(__CUDACC__)
#include <arm_neon.h>
#endif
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__) || defined(_M_X64) || defined(__i386) || \
defined(_M_IX86)
#if defined(__F16C__) && \
!(defined(__CUDA_ARCH__) || defined(__CUDACC__) || \
defined(__HIP_DEVICE_COMPILE__))
#define C10_X86_F16 1
#include <immintrin.h> // import conversion ops from f16cintrin.h
#endif // defined(__F16C__) && !(defined(__CUDA_ARCH__) || defined(__CUDACC__)
// || defined(__HIP_DEVICE_COMPILE__))
#endif // __x86_64__ || _M_X64 || __i386 || _M_IX86
#endif // __GNUC__ || __clang__
namespace torch::headeronly::detail {
/*
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit
* representation, to a 32-bit floating-point number in IEEE single-precision
* format.
*
* @note The implementation relies on IEEE-like (no assumption about rounding
* mode and no operations on denormals) floating-point operations and bitcasts
* between integer and floating-point variables.
*/
C10_HOST_DEVICE inline float fp16_ieee_to_fp32_value(uint16_t h) {
#ifdef C10_X86_F16
return _cvtsh_ss(h);
#else
/*
* Extend the half-precision floating-point number to 32 bits and shift to the
* upper part of the 32-bit word:
* +---+-----+------------+-------------------+
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
* +---+-----+------------+-------------------+
* Bits 31 26-30 16-25 0-15
*
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0
* - zero bits.
*/
const uint32_t w = (uint32_t)h << 16;
/*
* Extract the sign of the input number into the high bit of the 32-bit word:
*
* +---+----------------------------------+
* | S |0000000 00000000 00000000 00000000|
* +---+----------------------------------+
* Bits 31 0-31
*/
const uint32_t sign = w & UINT32_C(0x80000000);
/*
* Extract mantissa and biased exponent of the input number into the high bits
* of the 32-bit word:
*
* +-----+------------+---------------------+
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
* +-----+------------+---------------------+
* Bits 27-31 17-26 0-16
*/
const uint32_t two_w = w + w;
/*
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become
* mantissa and exponent of a single-precision floating-point number:
*
* S|Exponent | Mantissa
* +-+---+-----+------------+----------------+
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
* +-+---+-----+------------+----------------+
* Bits | 23-31 | 0-22
*
* Next, there are some adjustments to the exponent:
* - The exponent needs to be corrected by the difference in exponent bias
* between single-precision and half-precision formats (0x7F - 0xF = 0x70)
* - Inf and NaN values in the inputs should become Inf and NaN values after
* conversion to the single-precision number. Therefore, if the biased
* exponent of the half-precision input was 0x1F (max possible value), the
* biased exponent of the single-precision output must be 0xFF (max possible
* value). We do this correction in two steps:
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset
* below) rather than by 0x70 suggested by the difference in the exponent bias
* (see above).
* - Then we multiply the single-precision result of exponent adjustment by
* 2**(-112) to reverse the effect of exponent adjustment by 0xE0 less the
* necessary exponent adjustment by 0x70 due to difference in exponent bias.
* The floating-point multiplication hardware would ensure than Inf and
* NaN would retain their value on at least partially IEEE754-compliant
* implementations.
*
* Note that the above operations do not handle denormal inputs (where biased
* exponent == 0). However, they also do not operate on denormal inputs, and
* do not produce denormal results.
*/
constexpr uint32_t exp_offset = UINT32_C(0xE0) << 23;
// const float exp_scale = 0x1.0p-112f;
constexpr uint32_t scale_bits = (uint32_t)15 << 23;
float exp_scale_val = 0;
#if defined(_MSC_VER) && defined(__clang__)
__builtin_memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val));
#else
std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val));
#endif
const float exp_scale = exp_scale_val;
const float normalized_value =
fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
/*
* Convert denormalized half-precision inputs into single-precision results
* (always normalized). Zero inputs are also handled here.
*
* In a denormalized number the biased exponent is zero, and mantissa has
* on-zero bits. First, we shift mantissa into bits 0-9 of the 32-bit word.
*
* zeros | mantissa
* +---------------------------+------------+
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
* +---------------------------+------------+
* Bits 10-31 0-9
*
* Now, remember that denormalized half-precision numbers are represented as:
* FP16 = mantissa * 2**(-24).
* The trick is to construct a normalized single-precision number with the
* same mantissa and thehalf-precision input and with an exponent which would
* scale the corresponding mantissa bits to 2**(-24). A normalized
* single-precision floating-point number is represented as: FP32 = (1 +
* mantissa * 2**(-23)) * 2**(exponent - 127) Therefore, when the biased
* exponent is 126, a unit change in the mantissa of the input denormalized
* half-precision number causes a change of the constructed single-precision
* number by 2**(-24), i.e. the same amount.
*
* The last step is to adjust the bias of the constructed single-precision
* number. When the input half-precision number is zero, the constructed
* single-precision number has the value of FP32 = 1 * 2**(126 - 127) =
* 2**(-1) = 0.5 Therefore, we need to subtract 0.5 from the constructed
* single-precision number to get the numerical equivalent of the input
* half-precision number.
*/
constexpr uint32_t magic_mask = UINT32_C(126) << 23;
constexpr float magic_bias = 0.5f;
const float denormalized_value =
fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
/*
* - Choose either results of conversion of input as a normalized number, or
* as a denormalized number, depending on the input exponent. The variable
* two_w contains input exponent in bits 27-31, therefore if its smaller than
* 2**27, the input is either a denormal number, or zero.
* - Combine the result of conversion of exponent and mantissa with the sign
* of the input number.
*/
constexpr uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value)
: fp32_to_bits(normalized_value));
return fp32_from_bits(result);
#endif // C10_X86_F16
}
/*
* Convert a 32-bit floating-point number in IEEE single-precision format to a
* 16-bit floating-point number in IEEE half-precision format, in bit
* representation.
*
* @note The implementation relies on IEEE-like (no assumption about rounding
* mode and no operations on denormals) floating-point operations and bitcasts
* between integer and floating-point variables.
*/
inline uint16_t fp16_ieee_from_fp32_value(float f) {
#ifdef C10_X86_F16
return _cvtss_sh(f, _MM_FROUND_TO_NEAREST_INT);
#else
// const float scale_to_inf = 0x1.0p+112f;
// const float scale_to_zero = 0x1.0p-110f;
constexpr uint32_t scale_to_inf_bits = (uint32_t)239 << 23;
constexpr uint32_t scale_to_zero_bits = (uint32_t)17 << 23;
float scale_to_inf_val = 0, scale_to_zero_val = 0;
std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val));
std::memcpy(
&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val));
const float scale_to_inf = scale_to_inf_val;
const float scale_to_zero = scale_to_zero_val;
#if defined(_MSC_VER) && _MSC_VER == 1916
float base = ((signbit(f) != 0 ? -f : f) * scale_to_inf) * scale_to_zero;
#else
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
#endif
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return static_cast<uint16_t>(
(sign >> 16) |
(shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign));
#endif // C10_X86_F16
}
} // namespace torch::headeronly::detail
namespace c10::detail {
using torch::headeronly::detail::fp16_ieee_from_fp32_value;
using torch::headeronly::detail::fp16_ieee_to_fp32_value;
} // namespace c10::detail