Files
pytorch/torch/csrc/autograd/functions
Jeffrey Wan 4739d15a67 Skip some nodes during discovery using sequence number (#52180)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/12635

This change will help us speed up autograd's discovery algorithm in cases where we use `.grad` and we try to "unroll" the training loop. For example the example in the issue and also https://github.com/pytorch/pytorch/pull/52180#issuecomment-783400832 observe an unbounded multiple of speed-up.

We do this by adding a new sequence_nr-type numbering: for each node, we maintain the length of the longest path from it to any leaf node. How does this help us speed up discovery (dfs)? Previously the bottleneck was that the dfs that computes which nodes need to be executed always explored every node. With this change, before we run dfs, we first compute the mininum seq_nr among all the nodes passed as the `inputs`. If let this be some number N, intuitively this means that dfs should stay at least N units away from any leaf node. So, if we find ourselves too close to any leaf node, we should stop our search early.

Edit:
After some discussion offline, the plan is:
 - make old sequence_nr a construct of the profiler. This means we can avoid accessing thread local state in cases where the profiler is disabled. Note that we cannot replace sequence_nr as-is because profiler's use-case requires that thread-id + sequence_nr can uniquely identify a given node in order for downstream users/programs to correlate nodes from backward and forward passes. This means we must maintain two sequence_nr's and that we have an extra field in Node.
 - In a future PR, we can potentially remove sequence_nr entirely from the profiler as well, but we avoid doing it now because we haven't measured, and its a larger effort because we'd have to mess around with the dispatcher and profiler

Testing with this [code](https://gist.github.com/kyunghyuncho/5fb9991ce1233f909051854a84b7148e), we see that runtime no longer increases as we iterate.

Before:
```
100: Time taken: 0.47s, loss: 1.1e+06
200: Time taken: 0.064s, loss: 6.5e+05
300: Time taken: 0.088s, loss: 4.4e+05
400: Time taken: 0.1s, loss: 3.2e+05
500: Time taken: 0.12s, loss: 2.5e+05
600: Time taken: 0.15s, loss: 2e+05
700: Time taken: 0.18s, loss: 1.7e+05
800: Time taken: 0.2s, loss: 1.4e+05
900: Time taken: 0.22s, loss: 1.2e+05
1000: Time taken: 0.24s, loss: 1.1e+05
1100: Time taken: 0.27s, loss: 9.3e+04
1200: Time taken: 0.3s, loss: 8.3e+04
1300: Time taken: 0.34s, loss: 7.4e+04
1400: Time taken: 0.36s, loss: 6.7e+04
1500: Time taken: 0.38s, loss: 6.1e+04
1600: Time taken: 0.4s, loss: 5.6e+04
1700: Time taken: 0.42s, loss: 5.1e+04
1800: Time taken: 0.44s, loss: 4.7e+04
1900: Time taken: 0.47s, loss: 4.4e+04
2000: Time taken: 0.5s, loss: 4.1e+04
```
After:
```
100: Time taken: 0.49s, loss: 1.2e+06
200: Time taken: 0.031s, loss: 6.9e+05
300: Time taken: 0.031s, loss: 4.6e+05
400: Time taken: 0.031s, loss: 3.3e+05
500: Time taken: 0.031s, loss: 2.6e+05
600: Time taken: 0.031s, loss: 2.1e+05
700: Time taken: 0.031s, loss: 1.7e+05
800: Time taken: 0.031s, loss: 1.4e+05
900: Time taken: 0.031s, loss: 1.2e+05
1000: Time taken: 0.031s, loss: 1.1e+05
1100: Time taken: 0.031s, loss: 9.6e+04
1200: Time taken: 0.031s, loss: 8.6e+04
1300: Time taken: 0.031s, loss: 7.7e+04
1400: Time taken: 0.031s, loss: 7e+04
1500: Time taken: 0.031s, loss: 6.3e+04
1600: Time taken: 0.031s, loss: 5.8e+04
1700: Time taken: 0.031s, loss: 5.3e+04
1800: Time taken: 0.031s, loss: 4.9e+04
1900: Time taken: 0.031s, loss: 4.5e+04
2000: Time taken: 0.032s, loss: 4.2e+04

```
Testing w/ small graph to check for regression:
```
import torch
from torch.utils.benchmark import Timer

setup="""
a = torch.rand((2, 2), requires_grad=True)
b = torch.rand((2, 2), requires_grad=True)
gradient = torch.ones(2, 2)
"""

stmt="""
torch.autograd.grad(a*b, [a, b], gradient)
"""

timer = Timer(stmt, setup)

print(timer.timeit(10000))
print(timer.collect_callgrind(100))
```
Result: there doesn't seem to be any significant regression
```
Time before: 12.74 us
Time after: 13.12 us
Instruction count before:
                           All          Noisy symbols removed
    Instructions:      8078960                    8000882
    Baseline:             4226                       3838
Instruction count after:
                           All          Noisy symbols removed
    Instructions:      8091846                    8017940
    Baseline:             4336                       3838
100 runs per measurement, 1 thread
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52180

Reviewed By: gchanan, zhangguanheng66

Differential Revision: D26794387

Pulled By: soulitzer

fbshipit-source-id: c00d387a29f151109c33dc6f1b56a8f275cdec58
2021-03-04 16:13:53 -08:00
..