mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53063 The problem was that a derived class was marked with "py::nodelete", while the base class wasn't. Now they both are marked correctly. Test Plan: Imported from OSS Reviewed By: bertmaher Differential Revision: D26737877 Pulled By: ZolotukhinM fbshipit-source-id: 17d9d430651c8f695fc7b6bf6784e7719e20a4d2
64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
import torch
|
|
|
|
from torch.testing._internal.common_utils import run_tests
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
class kernel_arena_scope(object):
|
|
def __enter__(self):
|
|
self.scope = torch._C._te.KernelScope()
|
|
|
|
def __exit__(self, typ, val, traceback):
|
|
self.scope = None
|
|
|
|
class TestTensorExprPyBind(JitTestCase):
|
|
def test_simple_sum(self):
|
|
with kernel_arena_scope():
|
|
dtype = torch._C._te.Dtype.Float
|
|
N = 32
|
|
dN = torch._C._te.ExprHandle.int(N)
|
|
|
|
A = torch._C._te.Placeholder('A', dtype, [dN])
|
|
B = torch._C._te.Placeholder('B', dtype, [dN])
|
|
|
|
def compute(i):
|
|
return A.load([i]) + B.load([i])
|
|
C = torch._C._te.Compute('C', [torch._C._te.DimArg(dN, 'i')], compute)
|
|
|
|
loopnest = torch._C._te.LoopNest([C])
|
|
loopnest.prepare_for_codegen()
|
|
stmt = torch._C._te.simplify(loopnest.root_stmt())
|
|
|
|
cg = torch._C._te.construct_codegen('ir_eval', stmt, [torch._C._te.BufferArg(x) for x in [A, B, C]])
|
|
|
|
tA = torch.rand(N) * 5
|
|
tB = torch.rand(N) * 6
|
|
tC = torch.empty(N)
|
|
cg.call([tA, tB, tC])
|
|
torch.testing.assert_allclose(tA + tB, tC)
|
|
|
|
def test_external_calls(self):
|
|
with kernel_arena_scope():
|
|
dtype = torch._C._te.Dtype.Float
|
|
|
|
ZERO = torch._C._te.ExprHandle.int(0)
|
|
ONE = torch._C._te.ExprHandle.int(1)
|
|
FOUR = torch._C._te.ExprHandle.int(4)
|
|
A = torch._C._te.BufHandle('A', [ONE, FOUR], dtype)
|
|
B = torch._C._te.BufHandle('B', [FOUR, ONE], dtype)
|
|
C = torch._C._te.BufHandle('C', [ONE, ONE], dtype)
|
|
|
|
s = torch._C._te.ExternalCall(C, "nnc_aten_matmul", [A, B], [])
|
|
|
|
loopnest = torch._C._te.LoopNest(s, [C])
|
|
loopnest.prepare_for_codegen()
|
|
codegen = torch._C._te.construct_codegen('ir_eval', s, [torch._C._te.BufferArg(x) for x in [A, B, C]])
|
|
|
|
tA = torch.ones(1, 4)
|
|
tB = torch.ones(4, 1)
|
|
tC = torch.empty(1, 1)
|
|
codegen.call([tA, tB, tC])
|
|
torch.testing.assert_allclose(torch.matmul(tA, tB), tC)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|