mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/38681. A duplicate of https://github.com/pytorch/pytorch/pull/50052 created to become importable to the fb internal tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/51790 Reviewed By: agolynski Differential Revision: D26279045 Pulled By: glaringlee fbshipit-source-id: 348e171dee9c370a76002b65d0c82c329f57a421
758 lines
33 KiB
Python
758 lines
33 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
import random
|
|
from torch._six import nan
|
|
from itertools import product
|
|
|
|
from torch.testing._internal.common_utils import \
|
|
(TestCase, run_tests, make_tensor)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, dtypes, onlyOnCPUAndCUDA,
|
|
skipCUDAIfRocm, onlyCUDA, dtypesIfCUDA, onlyCPU)
|
|
|
|
# TODO: remove this
|
|
SIZE = 100
|
|
|
|
class TestSortAndSelect(TestCase):
|
|
|
|
def assertIsOrdered(self, order, x, mxx, ixx, task):
|
|
SIZE = 4
|
|
if order == 'descending':
|
|
def check_order(a, b):
|
|
# `a != a` because we put NaNs
|
|
# at the end of ascending sorted lists,
|
|
# and the beginning of descending ones.
|
|
return a != a or a >= b
|
|
elif order == 'ascending':
|
|
def check_order(a, b):
|
|
# see above
|
|
return b != b or a <= b
|
|
else:
|
|
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
|
|
|
|
are_ordered = True
|
|
for j, k in product(range(SIZE), range(1, SIZE)):
|
|
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
|
|
'torch.sort ({}) values unordered for {}'.format(order, task))
|
|
|
|
seen = set()
|
|
indicesCorrect = True
|
|
size = x.size(x.dim() - 1)
|
|
for k in range(size):
|
|
seen.clear()
|
|
for j in range(size):
|
|
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
|
|
msg='torch.sort ({}) indices wrong for {}'.format(order, task))
|
|
seen.add(ixx[k][j])
|
|
self.assertEqual(len(seen), size)
|
|
|
|
def test_sort(self, device):
|
|
SIZE = 4
|
|
x = torch.rand(SIZE, SIZE, device=device)
|
|
res1val, res1ind = torch.sort(x)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.tensor((), device=device)
|
|
res2ind = torch.tensor((), device=device, dtype=torch.long)
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
self.assertEqual(torch.argsort(x), res1ind)
|
|
self.assertEqual(x.argsort(), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort
|
|
self.assertEqual(
|
|
torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
|
|
torch.tensor((10, 20, 30, 40, 50), device=device),
|
|
atol=0, rtol=0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
x = torch.floor(torch.rand(SIZE, SIZE, device=device) * 10)
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# DESCENDING SORT
|
|
x = torch.rand(SIZE, SIZE, device=device)
|
|
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.tensor((), device=device)
|
|
res2ind = torch.tensor((), device=device, dtype=torch.long)
|
|
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
|
|
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort task
|
|
self.assertEqual(
|
|
torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
|
|
torch.tensor((50, 40, 30, 20, 10), device=device),
|
|
atol=0, rtol=0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# Test sorting with NaNs
|
|
x = torch.rand(SIZE, SIZE, device=device)
|
|
x[1][2] = float('NaN')
|
|
x[3][0] = float('NaN')
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
torch.sort(x, out=(res2val, res2ind), descending=True)
|
|
self.assertIsOrdered('descending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
|
|
@onlyCUDA
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_stable_sort_fails_on_CUDA(self, device, dtype):
|
|
x = torch.tensor([1, 0, 1, 0], dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, "stable=True is not implemented on CUDA yet."):
|
|
x.sort(stable=True)
|
|
|
|
@onlyCPU
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_stable_sort(self, device, dtype):
|
|
for ncopies in (100, 1000, 10000):
|
|
x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
|
|
_, idx = x.sort(stable=True)
|
|
self.assertEqual(
|
|
idx[:ncopies],
|
|
torch.arange(start=0, end=2 * ncopies, step=2, device=device)
|
|
)
|
|
self.assertEqual(
|
|
idx[ncopies:],
|
|
torch.arange(start=1, end=2 * ncopies, step=2, device=device)
|
|
)
|
|
|
|
@onlyCPU
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_stable_sort_against_numpy(self, device, dtype):
|
|
if dtype in torch.testing.floating_types_and(torch.float16):
|
|
inf = float('inf')
|
|
neg_inf = -float('inf')
|
|
nan = float('nan')
|
|
else:
|
|
if dtype != torch.bool:
|
|
# no torch.iinfo support for torch.bool
|
|
inf = torch.iinfo(dtype).max
|
|
neg_inf = torch.iinfo(dtype).min
|
|
else:
|
|
inf = True
|
|
neg_inf = ~inf
|
|
# no nan for integral types, we use inf instead for simplicity
|
|
nan = inf
|
|
|
|
def generate_samples():
|
|
from itertools import chain, combinations
|
|
|
|
def repeated_index_fill(t, dim, idxs, vals):
|
|
res = t
|
|
for idx, val in zip(idxs, vals):
|
|
res = res.index_fill(dim, idx, val)
|
|
return res
|
|
|
|
for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
|
|
size = min(*sizes)
|
|
x = (torch.randn(*sizes, device=device) * size).to(dtype)
|
|
yield (x, 0)
|
|
|
|
# Generate tensors which are being filled at random locations
|
|
# with values from the non-empty subsets of the set (inf, neg_inf, nan)
|
|
# for each dimension.
|
|
n_fill_vals = 3 # cardinality of (inf, neg_inf, nan)
|
|
for dim in range(len(sizes)):
|
|
idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
|
|
vals = (inf, neg_inf, nan)
|
|
subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
|
|
for r in range(1, n_fill_vals + 1))
|
|
for subset in subsets:
|
|
idxs_subset, vals_subset = zip(*subset)
|
|
yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)
|
|
|
|
for sizes in [(100,), (1000,), (10000,)]:
|
|
size = sizes[0]
|
|
# binary strings
|
|
yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)
|
|
|
|
for sample, dim in generate_samples():
|
|
_, idx_torch = sample.sort(dim=dim, stable=True)
|
|
sample_numpy = sample.numpy()
|
|
idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
|
|
self.assertEqual(idx_torch, idx_numpy)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
|
|
def test_msort(self, device, dtype):
|
|
def test(shape):
|
|
tensor = make_tensor(shape, device, dtype, low=-9, high=9)
|
|
if tensor.size() != torch.Size([]):
|
|
expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
|
|
else:
|
|
expected = tensor # numpy.msort() does not support empty shapes tensor
|
|
|
|
result = torch.msort(tensor)
|
|
self.assertEqual(result, expected)
|
|
|
|
out = torch.empty_like(result)
|
|
torch.msort(tensor, out=out)
|
|
self.assertEqual(out, expected)
|
|
|
|
shapes = (
|
|
[],
|
|
[0, ],
|
|
[20, ],
|
|
[1, 20],
|
|
[30, 30],
|
|
[10, 20, 30]
|
|
)
|
|
for shape in shapes:
|
|
test(shape)
|
|
|
|
def test_topk(self, device):
|
|
def topKViaSort(t, k, dim, dir):
|
|
sorted, indices = t.sort(dim, dir)
|
|
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
|
|
|
|
def compareTensors(t, res1, ind1, res2, ind2, dim):
|
|
# Values should be exactly equivalent
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Indices might differ based on the implementation, since there is
|
|
# no guarantee of the relative order of selection
|
|
if not ind1.eq(ind2).all():
|
|
# To verify that the indices represent equivalent elements,
|
|
# gather from the input using the topk indices and compare against
|
|
# the sort indices
|
|
vals = t.gather(dim, ind2)
|
|
self.assertEqual(res1, vals, atol=0, rtol=0)
|
|
|
|
def compare(t, k, dim, dir):
|
|
topKVal, topKInd = t.topk(k, dim, dir, True)
|
|
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
|
|
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
|
|
|
|
t = torch.rand(random.randint(1, SIZE),
|
|
random.randint(1, SIZE),
|
|
random.randint(1, SIZE), device=device)
|
|
|
|
for _kTries in range(3):
|
|
for _dimTries in range(3):
|
|
for transpose in (True, False):
|
|
for dir in (True, False):
|
|
testTensor = t
|
|
if transpose:
|
|
dim1 = random.randrange(t.ndimension())
|
|
dim2 = dim1
|
|
while dim1 == dim2:
|
|
dim2 = random.randrange(t.ndimension())
|
|
|
|
testTensor = t.transpose(dim1, dim2)
|
|
|
|
dim = random.randrange(testTensor.ndimension())
|
|
k = random.randint(1, testTensor.size(dim))
|
|
compare(testTensor, k, dim, dir)
|
|
|
|
def test_topk_arguments(self, device):
|
|
q = torch.randn(10, 2, 10, device=device)
|
|
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
|
|
self.assertRaises(TypeError, lambda: q.topk(4, True))
|
|
|
|
@skipCUDAIfRocm
|
|
def test_unique_dim(self, device):
|
|
self.assertFalse(hasattr(torch, 'unique_dim'))
|
|
|
|
def run_test(device, dtype):
|
|
x = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
|
|
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
|
|
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
|
|
expected_unique_dim0 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim0 = torch.tensor([0, 0])
|
|
expected_counts_dim0 = torch.tensor([2])
|
|
expected_unique_dim1 = torch.tensor([[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]],
|
|
[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
|
|
[[False, True], [True, True]]],
|
|
dtype=torch.bool,
|
|
device=device)
|
|
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
|
|
expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
|
|
expected_counts_dim1 = torch.tensor([2, 1, 1])
|
|
expected_counts_dim1_bool = torch.tensor([2, 2])
|
|
expected_unique_dim2 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim2 = torch.tensor([0, 1])
|
|
expected_counts_dim2 = torch.tensor([1, 1])
|
|
expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
|
|
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
|
|
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
|
|
# dim0
|
|
x_unique = torch.unique(x, dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
# dim1
|
|
x_unique = torch.unique(x, dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_counts_dim1_bool, x_counts)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
|
|
self.assertEqual(expected_counts_dim1_bool, x_counts)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
# dim2
|
|
x_unique = torch.unique(x, dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
# test empty tensor
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x_empty,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
self.assertEqual(expected_unique_empty, x_unique)
|
|
self.assertEqual(expected_inverse_empty, x_inverse)
|
|
self.assertEqual(expected_counts_empty, x_counts)
|
|
|
|
# test not a well formed tensor
|
|
# Checking for runtime error, as this is the expected behaviour
|
|
with self.assertRaises(RuntimeError):
|
|
torch.unique(
|
|
x_ill_formed_empty,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
|
|
# test along dim2
|
|
with self.assertRaises(RuntimeError):
|
|
torch.unique(
|
|
x_ill_formed_empty_another,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=2)
|
|
|
|
# test consecutive version
|
|
y = torch.tensor(
|
|
[[0, 1],
|
|
[0, 1],
|
|
[0, 1],
|
|
[1, 2],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_unique = torch.tensor(
|
|
[[0, 1],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
|
|
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
|
|
expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
|
|
expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
|
|
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_y_inverse_bool, y_inverse)
|
|
self.assertEqual(expected_y_counts_bool, y_counts)
|
|
else:
|
|
self.assertEqual(expected_y_inverse, y_inverse)
|
|
self.assertEqual(expected_y_counts, y_counts)
|
|
|
|
run_test(device, torch.float)
|
|
run_test(device, torch.double)
|
|
run_test(device, torch.long)
|
|
run_test(device, torch.uint8)
|
|
run_test(device, torch.bool)
|
|
|
|
@onlyCUDA
|
|
def test_topk_noncontiguous_gpu(self, device):
|
|
t = torch.randn(20, device=device)[::2]
|
|
top1, idx1 = t.topk(5)
|
|
top2, idx2 = t.contiguous().topk(5)
|
|
self.assertEqual(top1, top2)
|
|
self.assertEqual(idx1, idx2)
|
|
|
|
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
|
|
def test_topk_integral(self, device, dtype):
|
|
a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max, size=(10,),
|
|
dtype=dtype, device=device)
|
|
sort_topk = a.sort()[0][-5:].flip(0)
|
|
topk = a.topk(5)
|
|
self.assertEqual(sort_topk, topk[0]) # check values
|
|
self.assertEqual(sort_topk, a[topk[1]]) # check indices
|
|
|
|
@dtypesIfCUDA(*torch.testing.get_all_fp_dtypes())
|
|
@dtypes(torch.float, torch.double)
|
|
def test_topk_nonfinite(self, device, dtype):
|
|
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
|
|
val, idx = x.topk(4)
|
|
expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
|
|
self.assertEqual(val, expect)
|
|
self.assertEqual(idx, [0, 1, 2, 3])
|
|
|
|
val, idx = x.topk(4, largest=False)
|
|
expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
|
|
self.assertEqual(val, expect)
|
|
self.assertEqual(idx, [5, 4, 3, 2])
|
|
|
|
def test_topk_4d(self, device):
|
|
x = torch.ones(2, 3072, 2, 2, device=device)
|
|
x[:, 1, :, :] *= 2.
|
|
x[:, 10, :, :] *= 1.5
|
|
val, ind = torch.topk(x, k=2, dim=1)
|
|
expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
|
|
expected_ind[:, 1, :, :] = 10
|
|
expected_val = torch.ones(2, 2, 2, 2, device=device)
|
|
expected_val[:, 0, :, :] *= 2.
|
|
expected_val[:, 1, :, :] *= 1.5
|
|
self.assertEqual(val, expected_val, atol=0, rtol=0)
|
|
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
|
|
|
|
def _test_unique_scalar_empty(self, dtype, device, f):
|
|
# test scalar
|
|
x = torch.tensor(0, dtype=dtype, device=device)
|
|
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
|
|
expected_unique = torch.tensor([0], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor(0, device=device)
|
|
expected_counts = torch.tensor([1], device=device)
|
|
self.assertEqual(unique, expected_unique)
|
|
self.assertEqual(inverse, expected_inverse)
|
|
self.assertEqual(counts, expected_counts)
|
|
|
|
# test zero sized tensor
|
|
x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
|
|
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
|
|
expected_unique = torch.tensor([], dtype=dtype, device=device)
|
|
expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([], dtype=torch.long, device=device)
|
|
self.assertEqual(unique, expected_unique)
|
|
self.assertEqual(inverse, expected_inverse)
|
|
self.assertEqual(counts, expected_counts)
|
|
|
|
def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
|
|
def ensure_tuple(x):
|
|
if isinstance(x, torch.Tensor):
|
|
return (x,)
|
|
return x
|
|
|
|
for return_inverse in [True, False]:
|
|
for return_counts in [True, False]:
|
|
# test with expected
|
|
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
|
|
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
|
|
self.assertEqual(expected_unique, ret[0])
|
|
if return_inverse:
|
|
self.assertEqual(expected_inverse, ret[1])
|
|
if return_counts:
|
|
count_index = 1 + int(return_inverse)
|
|
self.assertEqual(expected_counts, ret[count_index])
|
|
|
|
# tests per-element unique on a higher rank tensor.
|
|
y = x.view(additional_shape)
|
|
y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
|
|
self.assertEqual(expected_unique, y_unique)
|
|
self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
|
|
self.assertEqual(expected_counts, y_counts)
|
|
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_unique(self, device, dtype):
|
|
if dtype is torch.half and self.device_type == 'cpu':
|
|
return # CPU does not have half support
|
|
|
|
def ensure_tuple(x):
|
|
if isinstance(x, torch.Tensor):
|
|
return (x,)
|
|
return x
|
|
|
|
if dtype is torch.bool:
|
|
x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
|
|
expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
|
|
expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
|
|
else:
|
|
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
|
|
expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
|
|
|
|
# test sorted unique
|
|
fs = [
|
|
lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
|
|
lambda x, **kwargs: x.unique(sorted=True, **kwargs),
|
|
]
|
|
for f in fs:
|
|
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
|
|
# test unsorted unique
|
|
fs = [
|
|
lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
|
|
lambda x, **kwargs: x.unique(sorted=False, **kwargs)
|
|
]
|
|
for f in fs:
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
for return_inverse in [True, False]:
|
|
for return_counts in [True, False]:
|
|
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
|
|
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
|
|
x_list = x.tolist()
|
|
x_unique_list = ret[0].tolist()
|
|
self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
|
|
if return_inverse:
|
|
x_inverse_list = ret[1].tolist()
|
|
for i, j in enumerate(x_inverse_list):
|
|
self.assertEqual(x_list[i], x_unique_list[j])
|
|
if return_counts:
|
|
count_index = 1 + int(return_inverse)
|
|
x_counts_list = ret[count_index].tolist()
|
|
for i, j in zip(x_unique_list, x_counts_list):
|
|
count = 0
|
|
for k in x_list:
|
|
if k == i:
|
|
count += 1
|
|
self.assertEqual(j, count)
|
|
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_unique_consecutive(self, device, dtype):
|
|
if dtype is torch.half and self.device_type == 'cpu':
|
|
return # CPU does not have half support
|
|
|
|
if dtype is torch.bool:
|
|
x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
|
|
expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
|
|
else:
|
|
x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
|
|
expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
|
|
|
|
for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
|
|
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
|
|
@dtypes(torch.double)
|
|
def test_kthvalue(self, device, dtype):
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
|
|
x0 = x.clone()
|
|
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
# test use of result tensors
|
|
k = random.randint(1, SIZE)
|
|
res1val = torch.tensor([], dtype=dtype, device=device)
|
|
res1ind = torch.tensor([], dtype=torch.long, device=device)
|
|
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
|
|
res2val, res2ind = torch.sort(x)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
|
|
# test non-default dim
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)
|
|
|
|
# non-contiguous
|
|
y = x.narrow(1, 0, 1)
|
|
y0 = y.contiguous()
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(y, k)
|
|
res2val, res2ind = torch.kthvalue(y0, k)
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
|
|
# non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
|
|
non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
|
|
expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
|
|
non_contig_cpu_t = non_contig_t.cpu()
|
|
expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)
|
|
|
|
out_val, out_ind = non_contig_t.kthvalue(2)
|
|
self.assertEqual(expected_val, out_val, atol=0, rtol=0)
|
|
self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
|
|
self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
|
|
self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)
|
|
|
|
# check that the input wasn't modified
|
|
self.assertEqual(x, x0, atol=0, rtol=0)
|
|
|
|
# simple test case (with repetitions)
|
|
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
|
|
self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
|
|
self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)
|
|
|
|
# simple test case (with NaN)
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
|
|
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
|
|
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
|
|
res2val, res2ind = torch.sort(x)
|
|
for k in ks:
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
|
|
# test overlapping output
|
|
@dtypes(torch.double)
|
|
@onlyOnCPUAndCUDA # Fails on XLA
|
|
def test_kthvalue_overlap(self, device, dtype):
|
|
S = 10
|
|
k = 5
|
|
a = torch.randn(S)
|
|
indices = torch.empty((), device=device, dtype=torch.long)
|
|
with self.assertRaisesRegex(RuntimeError, "unsupported operation:"):
|
|
torch.kthvalue(a, k, out=(a, indices))
|
|
|
|
@dtypes(torch.float)
|
|
@onlyOnCPUAndCUDA # Fails on XLA
|
|
def test_kthvalue_scalar(self, device, dtype):
|
|
# Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
|
|
# Tests that passing a scalar tensor or 1D tensor with 1 element work either way
|
|
res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
|
|
ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
|
|
self.assertEqual(res[0], ref[0].squeeze())
|
|
self.assertEqual(res[1], ref[1].squeeze())
|
|
|
|
instantiate_device_type_tests(TestSortAndSelect, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|