mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
155 lines
5.2 KiB
Python
155 lines
5.2 KiB
Python
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
import unittest
|
|
from hypothesis import given, settings
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python import brew, core, model_helper, rnn_cell
|
|
import caffe2.python.workspace as ws
|
|
|
|
|
|
class TestObservers(unittest.TestCase):
|
|
def setUp(self):
|
|
core.GlobalInit(["python", "caffe2"])
|
|
ws.ResetWorkspace()
|
|
self.model = model_helper.ModelHelper()
|
|
brew.fc(self.model, "data", "y",
|
|
dim_in=4, dim_out=2,
|
|
weight_init=('ConstantFill', dict(value=1.0)),
|
|
bias_init=('ConstantFill', dict(value=0.0)),
|
|
axis=0)
|
|
ws.FeedBlob("data", np.zeros([4], dtype='float32'))
|
|
|
|
ws.RunNetOnce(self.model.param_init_net)
|
|
ws.CreateNet(self.model.net)
|
|
|
|
def testObserver(self):
|
|
ob = self.model.net.AddObserver("TimeObserver")
|
|
ws.RunNet(self.model.net)
|
|
print(ob.average_time())
|
|
num = self.model.net.NumObservers()
|
|
self.model.net.RemoveObserver(ob)
|
|
assert(self.model.net.NumObservers() + 1 == num)
|
|
|
|
@given(
|
|
num_layers=st.integers(1, 4),
|
|
forward_only=st.booleans()
|
|
)
|
|
@settings(deadline=1000)
|
|
def test_observer_rnn_executor(self, num_layers, forward_only):
|
|
'''
|
|
Test that the RNN executor produces same results as
|
|
the non-executor (i.e running step nets as sequence of simple nets).
|
|
'''
|
|
|
|
Tseq = [2, 3, 4]
|
|
batch_size = 10
|
|
input_dim = 3
|
|
hidden_dim = 3
|
|
|
|
run_cnt = [0] * len(Tseq)
|
|
avg_time = [0] * len(Tseq)
|
|
for j in range(len(Tseq)):
|
|
T = Tseq[j]
|
|
|
|
ws.ResetWorkspace()
|
|
ws.FeedBlob(
|
|
"seq_lengths",
|
|
np.array([T] * batch_size, dtype=np.int32)
|
|
)
|
|
ws.FeedBlob("target", np.random.rand(
|
|
T, batch_size, hidden_dim).astype(np.float32))
|
|
ws.FeedBlob("hidden_init", np.zeros(
|
|
[1, batch_size, hidden_dim], dtype=np.float32
|
|
))
|
|
ws.FeedBlob("cell_init", np.zeros(
|
|
[1, batch_size, hidden_dim], dtype=np.float32
|
|
))
|
|
|
|
model = model_helper.ModelHelper(name="lstm")
|
|
model.net.AddExternalInputs(["input"])
|
|
|
|
init_blobs = []
|
|
for i in range(num_layers):
|
|
hidden_init, cell_init = model.net.AddExternalInputs(
|
|
"hidden_init_{}".format(i),
|
|
"cell_init_{}".format(i)
|
|
)
|
|
init_blobs.extend([hidden_init, cell_init])
|
|
|
|
output, last_hidden, _, last_state = rnn_cell.LSTM(
|
|
model=model,
|
|
input_blob="input",
|
|
seq_lengths="seq_lengths",
|
|
initial_states=init_blobs,
|
|
dim_in=input_dim,
|
|
dim_out=[hidden_dim] * num_layers,
|
|
drop_states=True,
|
|
forward_only=forward_only,
|
|
return_last_layer_only=True,
|
|
)
|
|
|
|
loss = model.AveragedLoss(
|
|
model.SquaredL2Distance([output, "target"], "dist"),
|
|
"loss"
|
|
)
|
|
# Add gradient ops
|
|
if not forward_only:
|
|
model.AddGradientOperators([loss])
|
|
|
|
# init
|
|
for init_blob in init_blobs:
|
|
ws.FeedBlob(init_blob, np.zeros(
|
|
[1, batch_size, hidden_dim], dtype=np.float32
|
|
))
|
|
ws.RunNetOnce(model.param_init_net)
|
|
|
|
# Run with executor
|
|
self.enable_rnn_executor(model.net, 1, forward_only)
|
|
|
|
np.random.seed(10022015)
|
|
input_shape = [T, batch_size, input_dim]
|
|
ws.FeedBlob(
|
|
"input",
|
|
np.random.rand(*input_shape).astype(np.float32)
|
|
)
|
|
ws.FeedBlob(
|
|
"target",
|
|
np.random.rand(
|
|
T,
|
|
batch_size,
|
|
hidden_dim
|
|
).astype(np.float32)
|
|
)
|
|
ws.CreateNet(model.net, overwrite=True)
|
|
|
|
time_ob = model.net.AddObserver("TimeObserver")
|
|
run_cnt_ob = model.net.AddObserver("RunCountObserver")
|
|
ws.RunNet(model.net)
|
|
avg_time[j] = time_ob.average_time()
|
|
run_cnt[j] = int(''.join(x for x in run_cnt_ob.debug_info() if x.isdigit()))
|
|
model.net.RemoveObserver(time_ob)
|
|
model.net.RemoveObserver(run_cnt_ob)
|
|
|
|
print(avg_time)
|
|
print(run_cnt)
|
|
self.assertTrue(run_cnt[1] > run_cnt[0] and run_cnt[2] > run_cnt[1])
|
|
self.assertEqual(run_cnt[1] - run_cnt[0], run_cnt[2] - run_cnt[1])
|
|
|
|
def enable_rnn_executor(self, net, value, forward_only):
|
|
num_found = 0
|
|
for op in net.Proto().op:
|
|
if op.type.startswith("RecurrentNetwork"):
|
|
for arg in op.arg:
|
|
if arg.name == 'enable_rnn_executor':
|
|
arg.i = value
|
|
num_found += 1
|
|
# This sanity check is so that if someone changes the
|
|
# enable_rnn_executor parameter name, the test will
|
|
# start failing as this function will become defective.
|
|
self.assertEqual(1 if forward_only else 2, num_found)
|