mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
96 lines
3.5 KiB
Python
96 lines
3.5 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
from caffe2.python import workspace, brew, model_helper
|
|
from caffe2.python.modeling.get_entry_from_blobs import GetEntryFromBlobs
|
|
|
|
import numpy as np
|
|
|
|
|
|
class GetEntryFromBlobsTest(unittest.TestCase):
|
|
def test_get_entry_from_blobs(self):
|
|
model = model_helper.ModelHelper(name="test")
|
|
data = model.net.AddExternalInput("data")
|
|
fc1 = brew.fc(model, data, "fc1", dim_in=10, dim_out=8)
|
|
|
|
# no operator name set, will use default
|
|
brew.fc(model, fc1, "fc2", dim_in=8, dim_out=4)
|
|
i1, i2 = np.random.randint(4, size=2)
|
|
net_modifier = GetEntryFromBlobs(
|
|
blobs=['fc1_w', 'fc2_w'],
|
|
logging_frequency=10,
|
|
i1=i1,
|
|
i2=i2,
|
|
)
|
|
net_modifier(model.net)
|
|
|
|
workspace.FeedBlob('data', np.random.rand(10, 10).astype(np.float32))
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.RunNetOnce(model.net)
|
|
|
|
fc1_w = workspace.FetchBlob('fc1_w')
|
|
fc1_w_entry = workspace.FetchBlob('fc1_w_{0}_{1}'.format(i1, i2))
|
|
|
|
self.assertEqual(fc1_w_entry.size, 1)
|
|
self.assertEqual(fc1_w_entry[0], fc1_w[i1][i2])
|
|
assert model.net.output_record() is None
|
|
|
|
def test_get_entry_from_blobs_modify_output_record(self):
|
|
model = model_helper.ModelHelper(name="test")
|
|
data = model.net.AddExternalInput("data")
|
|
fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=4)
|
|
|
|
# no operator name set, will use default
|
|
brew.fc(model, fc1, "fc2", dim_in=4, dim_out=4)
|
|
i1, i2 = np.random.randint(4), np.random.randint(5) - 1
|
|
net_modifier = GetEntryFromBlobs(
|
|
blobs=['fc1_w', 'fc2_w'],
|
|
logging_frequency=10,
|
|
i1=i1,
|
|
i2=i2,
|
|
)
|
|
net_modifier(model.net, modify_output_record=True)
|
|
|
|
workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32))
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.RunNetOnce(model.net)
|
|
|
|
fc1_w = workspace.FetchBlob('fc1_w')
|
|
if i2 < 0:
|
|
fc1_w_entry = workspace.FetchBlob('fc1_w_{0}_all'.format(i1))
|
|
else:
|
|
fc1_w_entry = workspace.FetchBlob('fc1_w_{0}_{1}'.format(i1, i2))
|
|
|
|
if i2 < 0:
|
|
self.assertEqual(fc1_w_entry.size, 4)
|
|
for j in range(4):
|
|
self.assertEqual(fc1_w_entry[0][j], fc1_w[i1][j])
|
|
else:
|
|
self.assertEqual(fc1_w_entry.size, 1)
|
|
self.assertEqual(fc1_w_entry[0], fc1_w[i1][i2])
|
|
|
|
assert 'fc1_w' + net_modifier.field_name_suffix() in\
|
|
model.net.output_record().field_blobs(),\
|
|
model.net.output_record().field_blobs()
|
|
assert 'fc2_w' + net_modifier.field_name_suffix() in\
|
|
model.net.output_record().field_blobs(),\
|
|
model.net.output_record().field_blobs()
|