mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Related to Issue: https://github.com/pytorch/pytorch/issues/131335 Resolving PR: https://github.com/pytorch/pytorch/pull/132023 Test output: ``` (pytorch-3.10) [gabeferns@devvm2252.cco0 ~/pytorch (enable-test-max-pool2d6)]$ TORCHINDUCTOR_ABI_COMPATIBLE=1 python test/inductor/test_cpu_cpp_wrapper.py -k test_max_pool2d6 inline_call [] stats [('calls_captured', 3), ('unique_graphs', 1)] inductor [('extern_calls', 3), ('fxgraph_cache_miss', 1)] aot_autograd [('total', 1), ('ok', 1)] .inline_call [] stats [('calls_captured', 3), ('unique_graphs', 1)] aot_autograd [('total', 1), ('ok', 1)] inductor [('extern_calls', 3), ('fxgraph_cache_miss', 1)] . ---------------------------------------------------------------------- Ran 2 tests in 8.668s OK ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/132219 Approved by: https://github.com/desertfire
435 lines
14 KiB
Python
435 lines
14 KiB
Python
# Owner(s): ["oncall: cpu inductor"]
|
|
import sys
|
|
import unittest
|
|
from typing import NamedTuple
|
|
|
|
import torch
|
|
from torch._inductor import config
|
|
from torch._inductor.test_case import TestCase as InductorTestCase
|
|
from torch.testing._internal.common_device_type import (
|
|
get_desired_device_type_test_bases,
|
|
)
|
|
from torch.testing._internal.common_utils import IS_MACOS, slowTest, TEST_WITH_ROCM
|
|
from torch.testing._internal.inductor_utils import HAS_CPU
|
|
|
|
|
|
try:
|
|
try:
|
|
from . import (
|
|
test_cpu_repro,
|
|
test_cpu_select_algorithm,
|
|
test_mkldnn_pattern_matcher,
|
|
test_torchinductor,
|
|
test_torchinductor_dynamic_shapes,
|
|
)
|
|
except ImportError:
|
|
import test_cpu_repro
|
|
import test_cpu_select_algorithm
|
|
import test_mkldnn_pattern_matcher
|
|
import test_torchinductor
|
|
import test_torchinductor_dynamic_shapes
|
|
except unittest.SkipTest:
|
|
if __name__ == "__main__":
|
|
sys.exit(0)
|
|
raise
|
|
|
|
|
|
_desired_test_bases = get_desired_device_type_test_bases()
|
|
RUN_CPU = (
|
|
HAS_CPU
|
|
and any(getattr(x, "device_type", "") == "cpu" for x in _desired_test_bases)
|
|
and not IS_MACOS
|
|
)
|
|
|
|
|
|
class CppWrapperTemplate:
|
|
pass
|
|
|
|
|
|
class TestCppWrapper(InductorTestCase):
|
|
device = "cpu"
|
|
|
|
|
|
class DynamicShapesCppWrapperCpuTests(InductorTestCase):
|
|
device = "cpu"
|
|
|
|
|
|
test_failures_cpp_wrapper = {
|
|
# conv2d will fallback for dynamic shapes; the fallback path is not yet supported
|
|
"test_conv2d_unary_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
"test_conv2d_binary_inplace_fusion_failed_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
"test_conv2d_binary_inplace_fusion_pass_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
# aten._native_multi_head_attention.default is not yet supported for dynamic shapes
|
|
"test_multihead_attention_cpu_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
),
|
|
}
|
|
if TEST_WITH_ROCM:
|
|
test_failures_cpp_wrapper.update(
|
|
{
|
|
"test_linear_packed": test_torchinductor.TestFailure(
|
|
("cpp_wrapper"), is_skip=True
|
|
),
|
|
"test_linear_packed_dynamic_shapes": test_torchinductor.TestFailure(
|
|
("cpp_wrapper"), is_skip=True
|
|
),
|
|
}
|
|
)
|
|
if config.abi_compatible:
|
|
xfail_list = [
|
|
"test_conv2d_binary_inplace_fusion_failed_cpu",
|
|
"test_conv2d_binary_inplace_fusion_pass_cpu",
|
|
"test_dynamic_qlinear_cpu",
|
|
"test_dynamic_qlinear_qat_cpu",
|
|
"test_lstm_packed_change_input_sizes_cpu",
|
|
"test_profiler_mark_wrapper_call_cpu",
|
|
"test_qconv2d_add_cpu",
|
|
"test_qconv2d_add_relu_cpu",
|
|
"test_qconv2d_cpu",
|
|
"test_qconv2d_dequant_promotion_cpu",
|
|
"test_qconv2d_maxpool2d_linear_dynamic_cpu",
|
|
"test_qconv2d_relu_cpu",
|
|
"test_qlinear_cpu",
|
|
"test_qlinear_add_cpu",
|
|
"test_qlinear_add_relu_cpu",
|
|
"test_qlinear_dequant_promotion_cpu",
|
|
"test_qlinear_gelu_cpu",
|
|
"test_qlinear_relu_cpu",
|
|
*[
|
|
func
|
|
for func in dir(test_cpu_select_algorithm.TestSelectAlgorithmCPU())
|
|
if func.startswith("test_linear_with_pointwise")
|
|
],
|
|
]
|
|
for test_name in xfail_list:
|
|
test_failures_cpp_wrapper[test_name] = test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=False
|
|
)
|
|
test_failures_cpp_wrapper[
|
|
f"{test_name}_dynamic_shapes"
|
|
] = test_torchinductor.TestFailure(("cpp_wrapper",), is_skip=False)
|
|
skip_list = [
|
|
"test_multihead_attention_cpu",
|
|
]
|
|
for test_name in skip_list:
|
|
test_failures_cpp_wrapper[test_name] = test_torchinductor.TestFailure(
|
|
("cpp_wrapper",), is_skip=True
|
|
)
|
|
test_failures_cpp_wrapper[
|
|
f"{test_name}_dynamic_shapes"
|
|
] = test_torchinductor.TestFailure(("cpp_wrapper",), is_skip=True)
|
|
|
|
|
|
def make_test_case(
|
|
name,
|
|
device,
|
|
tests,
|
|
condition=True,
|
|
slow=False,
|
|
func_inputs=None,
|
|
code_string_count=None,
|
|
):
|
|
test_name = f"{name}_{device}" if device else name
|
|
if code_string_count is None:
|
|
code_string_count = {}
|
|
|
|
func = getattr(tests, test_name)
|
|
assert callable(func), "not a callable"
|
|
func = slowTest(func) if slow else func
|
|
|
|
@config.patch(cpp_wrapper=True, search_autotune_cache=False)
|
|
def fn(self):
|
|
tests.setUpClass()
|
|
tests.setUp()
|
|
try:
|
|
with torch._C._PreserveDispatchKeyGuard():
|
|
torch._C._dispatch_tls_set_dispatch_key_included(
|
|
torch._C.DispatchKey.Dense, True
|
|
)
|
|
|
|
_, code = test_torchinductor.run_and_get_cpp_code(
|
|
func, *func_inputs if func_inputs else []
|
|
)
|
|
self.assertEqual("CppWrapperCodeCache" in code, True)
|
|
self.assertTrue(
|
|
all(
|
|
code.count(string) == code_string_count[string]
|
|
for string in code_string_count
|
|
)
|
|
)
|
|
finally:
|
|
tests.tearDown()
|
|
tests.tearDownClass()
|
|
|
|
fn.__name__ = test_name
|
|
import copy
|
|
|
|
fn.__dict__ = copy.deepcopy(func.__dict__)
|
|
if condition:
|
|
setattr(
|
|
CppWrapperTemplate,
|
|
test_name,
|
|
fn,
|
|
)
|
|
|
|
|
|
if RUN_CPU:
|
|
|
|
class BaseTest(NamedTuple):
|
|
name: str
|
|
device: str = "cpu"
|
|
tests: InductorTestCase = test_torchinductor.CpuTests()
|
|
condition: bool = True
|
|
slow: bool = False
|
|
func_inputs: list = None
|
|
code_string_count: dict = {}
|
|
|
|
for item in [
|
|
BaseTest("test_add_complex"),
|
|
BaseTest("test_add_complex4"),
|
|
BaseTest("test_as_strided"), # buffer reuse
|
|
BaseTest("test_bernoulli1"),
|
|
BaseTest("test_bitwise"), # int32
|
|
BaseTest("test_bmm1"),
|
|
BaseTest("test_bmm2"),
|
|
BaseTest("test_cat"), # alias
|
|
BaseTest(
|
|
"test_conv2d_binary_inplace_fusion_failed",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
func_inputs=[
|
|
["op_convolution_pointwise_binary.call"],
|
|
["op_convolution_pointwise_binary_.call"],
|
|
],
|
|
),
|
|
BaseTest(
|
|
"test_conv2d_binary_inplace_fusion_pass",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
func_inputs=[
|
|
["op_convolution_pointwise_binary_.call"],
|
|
["op_convolution_pointwise_binary.call"],
|
|
],
|
|
),
|
|
BaseTest(
|
|
"test_conv2d_unary",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
slow=True,
|
|
),
|
|
BaseTest("test_conv_transpose2d_packed", "cpu", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_cumsum"),
|
|
BaseTest("test_custom_op_1"),
|
|
BaseTest("test_custom_op_2"),
|
|
BaseTest("test_custom_op_3"),
|
|
BaseTest("test_dtype_sympy_expr"),
|
|
BaseTest("test_embedding_bag"), # test default FallbackKernel
|
|
BaseTest("test_index_put1"),
|
|
BaseTest("test_index_put_deterministic_fallback"),
|
|
BaseTest("test_adding_tensor_offsets"),
|
|
BaseTest("test_inductor_layout_optimization_input_mutations"),
|
|
BaseTest("test_int_div", "", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_linear1"),
|
|
BaseTest("test_linear2"),
|
|
*[
|
|
BaseTest(func, "", test_cpu_select_algorithm.TestSelectAlgorithmCPU())
|
|
for func in dir(test_cpu_select_algorithm.TestSelectAlgorithmCPU())
|
|
if func.startswith("test_linear_with_pointwise")
|
|
],
|
|
BaseTest("test_polar"),
|
|
BaseTest(
|
|
"test_linear_binary",
|
|
"",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
torch.backends.mkldnn.is_available()
|
|
and torch.ops.mkldnn._is_mkldnn_bf16_supported(),
|
|
),
|
|
BaseTest(
|
|
"test_linear_packed",
|
|
"",
|
|
test_cpu_repro.CPUReproTests(),
|
|
torch.backends.mkldnn.is_available()
|
|
and (
|
|
torch.ops.mkldnn._is_mkldnn_bf16_supported()
|
|
or torch.ops.mkldnn._is_mkldnn_fp16_supported()
|
|
),
|
|
),
|
|
BaseTest(
|
|
"test_lstm_packed_change_input_sizes",
|
|
"cpu",
|
|
test_cpu_repro.CPUReproTests(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest("test_max_pool2d6"),
|
|
BaseTest("test_mm_views"),
|
|
BaseTest("test_multihead_attention", "cpu", test_cpu_repro.CPUReproTests()),
|
|
BaseTest(
|
|
"test_multi_threading",
|
|
# Two threads compile, so we expect the output code to be printed twice.
|
|
code_string_count={"py::gil_scoped_release release;": 2},
|
|
),
|
|
BaseTest("test_profiler_mark_wrapper_call"),
|
|
BaseTest(
|
|
"test_qconv2d",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qconv2d_relu",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qconv2d_add",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qconv2d_add_relu",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qconv2d_dequant_promotion",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qconv2d_maxpool2d_linear_dynamic",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestDynamicPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
func_inputs=[
|
|
[
|
|
"op_qconv2d_pointwise.call",
|
|
"op_quantized_max_pool2d_.call",
|
|
"op_qlinear_pointwise.call",
|
|
]
|
|
],
|
|
),
|
|
BaseTest(
|
|
"test_qlinear",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qlinear_relu",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qlinear_gelu",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qlinear_add",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qlinear_add_relu",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_qlinear_dequant_promotion",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_dynamic_qlinear",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest(
|
|
"test_dynamic_qlinear_qat",
|
|
"cpu",
|
|
test_mkldnn_pattern_matcher.TestPatternMatcher(),
|
|
condition=torch.backends.mkldnn.is_available(),
|
|
),
|
|
BaseTest("test_randint"),
|
|
BaseTest("test_randn_with_dtype_and_device"),
|
|
BaseTest("test_reduction1"), # Reduction
|
|
BaseTest("test_relu"), # multiple inputs
|
|
BaseTest("test_repeat_interleave", "", test_cpu_repro.CPUReproTests()),
|
|
BaseTest("test_scalar_input"),
|
|
BaseTest("test_scalar_output"),
|
|
BaseTest("test_scaled_dot_product_attention"),
|
|
BaseTest("test_scatter1"),
|
|
BaseTest("test_scatter2"),
|
|
BaseTest("test_scatter3"),
|
|
BaseTest("test_scatter4"),
|
|
BaseTest("test_scatter5"),
|
|
BaseTest("test_scatter6"),
|
|
BaseTest("test_scatter_reduce1"),
|
|
BaseTest("test_scatter_reduce2"),
|
|
BaseTest("test_scatter_reduce3"),
|
|
BaseTest("test_silu"), # single input, single output
|
|
BaseTest("test_sort"),
|
|
BaseTest("test_sum_dtype"), # float64
|
|
BaseTest("test_sum_int"), # bool, int64, int8, uint8
|
|
BaseTest("test_tensor2"), # constant input
|
|
BaseTest(
|
|
"test_transpose", code_string_count={".reset();": 2}
|
|
), # multiple outputs, buffer clear
|
|
BaseTest("test_view_as_complex"),
|
|
BaseTest("test_view_as_real"),
|
|
]:
|
|
make_test_case(
|
|
item.name,
|
|
item.device,
|
|
item.tests,
|
|
item.condition,
|
|
item.slow,
|
|
item.func_inputs,
|
|
item.code_string_count,
|
|
)
|
|
|
|
test_torchinductor.copy_tests(
|
|
CppWrapperTemplate,
|
|
TestCppWrapper,
|
|
"cpp_wrapper",
|
|
test_failures_cpp_wrapper,
|
|
)
|
|
|
|
DynamicShapesCppWrapperTemplate = (
|
|
test_torchinductor_dynamic_shapes.make_dynamic_cls(CppWrapperTemplate)
|
|
)
|
|
|
|
test_torchinductor.copy_tests(
|
|
DynamicShapesCppWrapperTemplate,
|
|
DynamicShapesCppWrapperCpuTests,
|
|
"cpp_wrapper",
|
|
test_failures_cpp_wrapper,
|
|
xfail_prop="_expected_failure_dynamic_wrapper",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._inductor.test_case import run_tests
|
|
|
|
if RUN_CPU:
|
|
run_tests(needs="filelock")
|