mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR follows #116751. Pull Request resolved: https://github.com/pytorch/pytorch/pull/116486 Approved by: https://github.com/albanD
385 lines
11 KiB
C++
385 lines
11 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <ATen/core/Tensor.h>
|
|
#include <ATen/core/jit_type_base.h>
|
|
#include <c10/util/irange.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/Stream.h>
|
|
#include <torch/csrc/utils/tensor_memoryformats.h>
|
|
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
|
|
namespace py = pybind11;
|
|
|
|
// This makes intrusive_ptr to be available as a custom pybind11 holder type,
|
|
// see
|
|
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true);
|
|
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>);
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true);
|
|
|
|
namespace pybind11::detail {
|
|
|
|
// torch.Tensor <-> at::Tensor conversions (without unwrapping)
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<at::Tensor> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Tensor, _("torch.Tensor"));
|
|
|
|
bool load(handle src, bool);
|
|
|
|
static handle cast(
|
|
const at::Tensor& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
};
|
|
|
|
// torch._StorageBase <-> at::Storage
|
|
template <>
|
|
struct type_caster<at::Storage> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Storage, _("torch.StorageBase"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (torch::isStorage(obj)) {
|
|
value = torch::createStorage(obj);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Storage& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(torch::createPyObject(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::Generator> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Generator, _("torch.Generator"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPGenerator_Check(obj)) {
|
|
value = reinterpret_cast<THPGenerator*>(obj)->cdata;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Generator& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPGenerator_Wrap(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<at::IntArrayRef> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::IntArrayRef, _("Tuple[int, ...]"));
|
|
|
|
bool load(handle src, bool);
|
|
static handle cast(
|
|
at::IntArrayRef src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
|
|
private:
|
|
std::vector<int64_t> v_value;
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<at::SymIntArrayRef> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::SymIntArrayRef, _("List[int]"));
|
|
|
|
bool load(handle src, bool);
|
|
static handle cast(
|
|
at::SymIntArrayRef src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
|
|
private:
|
|
std::vector<c10::SymInt> v_value;
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<at::ArrayRef<c10::SymNode>> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::ArrayRef<c10::SymNode>, _("List[SymNode]"));
|
|
|
|
bool load(handle src, bool);
|
|
static handle cast(
|
|
at::ArrayRef<c10::SymNode> src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
|
|
private:
|
|
std::vector<c10::SymNode> v_value;
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::MemoryFormat> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::MemoryFormat, _("torch.memory_format"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPMemoryFormat_Check(obj)) {
|
|
value = reinterpret_cast<THPMemoryFormat*>(obj)->memory_format;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
static handle cast(
|
|
at::MemoryFormat src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(torch::utils::getTHPMemoryFormat(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::Device> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Device, _("torch.device"));
|
|
|
|
// PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
|
|
// cannot be default-initialized, we provide this constructor to explicitly
|
|
// initialize that field. The value doesn't matter as it will be overwritten
|
|
// after a successful call to load.
|
|
type_caster() : value(c10::kCPU) {}
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPDevice_Check(obj)) {
|
|
value = reinterpret_cast<THPDevice*>(obj)->device;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Device& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPDevice_New(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<c10::Stream> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(c10::Stream, _("torch.Stream"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPStream_Check(obj)) {
|
|
value = c10::Stream::unpack3(
|
|
((THPStream*)obj)->stream_id,
|
|
((THPStream*)obj)->device_index,
|
|
static_cast<c10::DeviceType>(((THPStream*)obj)->device_type));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const c10::Stream& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPStream_Wrap(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<c10::DispatchKey>
|
|
: public type_caster_base<c10::DispatchKey> {
|
|
using base = type_caster_base<c10::DispatchKey>;
|
|
c10::DispatchKey tmp;
|
|
|
|
public:
|
|
bool load(handle src, bool convert) {
|
|
if (base::load(src, convert)) {
|
|
return true;
|
|
} else if (py::isinstance(
|
|
src, py::module_::import("builtins").attr("str"))) {
|
|
tmp = c10::parseDispatchKey(py::cast<std::string>(src));
|
|
value = &tmp;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
c10::DispatchKey src,
|
|
return_value_policy policy,
|
|
handle parent) {
|
|
return base::cast(src, policy, parent);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<c10::Scalar> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(
|
|
c10::Scalar,
|
|
_("Union[Number, torch.SymInt, torch.SymFloat, torch.SymBool]"));
|
|
bool load(py::handle src, bool);
|
|
|
|
static py::handle cast(
|
|
const c10::Scalar& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<c10::SymInt> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(c10::SymInt, _("Union[int, torch.SymInt]"));
|
|
bool load(py::handle src, bool);
|
|
|
|
static py::handle cast(
|
|
const c10::SymInt& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<c10::SymFloat> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(c10::SymFloat, _("float"));
|
|
bool load(py::handle src, bool);
|
|
|
|
static py::handle cast(
|
|
const c10::SymFloat& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
};
|
|
|
|
template <>
|
|
struct TORCH_PYTHON_API type_caster<c10::SymBool> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(c10::SymBool, _("Union[bool, torch.SymBool]"));
|
|
bool load(py::handle src, bool);
|
|
|
|
static py::handle cast(
|
|
const c10::SymBool& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */);
|
|
};
|
|
|
|
template <typename T>
|
|
struct type_caster<c10::complex<T>> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(c10::complex<T>, _("complex"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
|
|
// Refered from `THPUtils_unpackComplexDouble`
|
|
Py_complex py_complex = PyComplex_AsCComplex(obj);
|
|
if (py_complex.real == -1.0 && PyErr_Occurred()) {
|
|
return false;
|
|
}
|
|
|
|
// Python's Complex is always double precision.
|
|
value = c10::complex<double>(py_complex.real, py_complex.imag);
|
|
return true;
|
|
}
|
|
|
|
static handle cast(
|
|
const c10::complex<T>& complex,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
// Python only knows double precision complex.
|
|
return handle(PyComplex_FromDoubles(complex.real(), complex.imag()));
|
|
}
|
|
};
|
|
|
|
} // namespace pybind11::detail
|
|
|
|
namespace torch::impl {
|
|
|
|
// Use this function if you have a C++ object that is used from both C++
|
|
// and Python contexts, and you need its GIL to be released when you
|
|
// destruct it in the Python context.
|
|
//
|
|
// This function is a valid shared_ptr destructor and can be used to
|
|
// conveniently allocate a shared_ptr to an object whose destructor will be run
|
|
// without the GIL. Pass it as the second argument to shared_ptr, e.g.,
|
|
//
|
|
// shared_ptr<T>(new T(), destroy_without_gil<T>)
|
|
//
|
|
// Attaching the GIL release logic to the holder pointer rather than the
|
|
// actual destructor of T is helpful when T is Python-agnostic and
|
|
// shouldn't refer to the PYthon API.
|
|
//
|
|
// Note there are limitations to the correctness of code that makes use of this.
|
|
// In particular, if a shared_ptr is constructed from C++ code without this
|
|
// destructor and then passed to pybind11, pybind11 will happily take ownership
|
|
// of the shared_ptr (and be willing to destruct it from a context where it is
|
|
// holding the GIL). unique_ptr with a type branded deleter is less prone to
|
|
// this problem, because a stock deleter unique_ptr is not convertible with it.
|
|
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
|
|
// destructors that the GIL is not held (using a virtual call to get to the
|
|
// Python interpreter); alternately, we could use a virtual call to simply
|
|
// ensure we release the GIL in the C++ destructor, however, this is a layering
|
|
// violation (why does code that is ostensibly Python agnostic calling into the
|
|
// GIL).
|
|
//
|
|
// Adapted from
|
|
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
|
|
template <typename T>
|
|
inline void destroy_without_gil(T* ptr) {
|
|
// Because the ownership of a shared_ptr is diffuse, it's not possible to
|
|
// necessarily predict whether or not the last reference to an object will
|
|
// be destructed from Python or C++. This means that in the destructor here,
|
|
// we don't necessarily know if we actually have the GIL or not; in fact,
|
|
// we don't even know if the Python interpreter still exists! Thus, we have
|
|
// to test for it before releasing the GIL.
|
|
//
|
|
// PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or
|
|
// _PyIsFinalizing? Both get set at the same time during the Python
|
|
// destruction process:
|
|
// https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
|
|
// so the operant question is whether or not you want to release the GIL after
|
|
// finalization has completed (and there is just no Python interpreter).
|
|
// Clearly there is no need to release GIL in that state, so we want
|
|
// Py_IsInitialized.
|
|
if (Py_IsInitialized() && PyGILState_Check()) {
|
|
pybind11::gil_scoped_release nogil;
|
|
delete ptr;
|
|
} else {
|
|
delete ptr;
|
|
}
|
|
}
|
|
|
|
} // namespace torch::impl
|