Files
pytorch/test/test_package.py
Zachary DeVito 205ab49612 [packaging] simpler dependency plotting (#45686)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45686

This uses an online graphviz viewer. The code is simpler, and
since it embeds all the data in the url you can just click the url
from your terminal.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D24059157

Pulled By: zdevito

fbshipit-source-id: 94d755cc2986c4226180b09ba36f8d040dda47cc
2020-10-06 23:40:00 -07:00

316 lines
12 KiB
Python

from unittest import main, skipIf
from torch.testing._internal.common_utils import TestCase, IS_WINDOWS
from tempfile import NamedTemporaryFile
from torch.package import PackageExporter, PackageImporter
from pathlib import Path
from tempfile import TemporaryDirectory
import torch
from sys import version_info
from io import StringIO
try:
from torchvision.models import resnet18
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision")
packaging_directory = Path(__file__).parent
class PackagingTest(TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._temporary_files = []
def temp(self):
t = NamedTemporaryFile()
name = t.name
if IS_WINDOWS:
t.close() # can't read an open file in windows
else:
self._temporary_files.append(t)
return name
def tearDown(self):
for t in self._temporary_files:
t.close()
self._temporary_files = []
def test_saving_source(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
he.save_source_file('foo', str(packaging_directory / 'module_a.py'))
he.save_source_file('foodir', str(packaging_directory / 'package_a'))
hi = PackageImporter(filename)
foo = hi.import_module('foo')
s = hi.import_module('foodir.subpackage')
self.assertEqual(foo.result, 'module_a')
self.assertEqual(s.result, 'package_a.subpackage')
def test_saving_string(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
src = """\
import math
the_math = math
"""
he.save_source_string('my_mod', src)
hi = PackageImporter(filename)
m = hi.import_module('math')
import math
self.assertIs(m, math)
my_mod = hi.import_module('my_mod')
self.assertIs(my_mod.math, math)
def test_save_module(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
import module_a
import package_a
he.save_module(module_a.__name__)
he.save_module(package_a.__name__)
hi = PackageImporter(filename)
module_a_i = hi.import_module('module_a')
self.assertEqual(module_a_i.result, 'module_a')
self.assertIsNot(module_a, module_a_i)
package_a_i = hi.import_module('package_a')
self.assertEqual(package_a_i.result, 'package_a')
self.assertIsNot(package_a_i, package_a)
def test_pickle(self):
import package_a.subpackage
obj = package_a.subpackage.PackageASubpackageObject()
obj2 = package_a.PackageAObject(obj)
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
he.save_pickle('obj', 'obj.pkl', obj2)
hi = PackageImporter(filename)
# check we got dependencies
sp = hi.import_module('package_a.subpackage')
# check we didn't get other stuff
with self.assertRaises(ImportError):
hi.import_module('module_a')
obj_loaded = hi.load_pickle('obj', 'obj.pkl')
self.assertIsNot(obj2, obj_loaded)
self.assertIsInstance(obj_loaded.obj, sp.PackageASubpackageObject)
self.assertIsNot(package_a.subpackage.PackageASubpackageObject, sp.PackageASubpackageObject)
def test_resources(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
he.save_text('main', 'main', "my string")
he.save_binary('main', 'main_binary', "my string".encode('utf-8'))
src = """\
import resources
t = resources.load_text('main', 'main')
b = resources.load_binary('main', 'main_binary')
"""
he.save_source_string('main', src, is_package=True)
hi = PackageImporter(filename)
m = hi.import_module('main')
self.assertEqual(m.t, "my string")
self.assertEqual(m.b, "my string".encode('utf-8'))
def test_extern(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
he.extern_modules(['package_a.subpackage', 'module_a'])
he.save_module('package_a')
hi = PackageImporter(filename)
import package_a.subpackage
import module_a
module_a_im = hi.import_module('module_a')
hi.import_module('package_a.subpackage')
package_a_im = hi.import_module('package_a')
self.assertIs(module_a, module_a_im)
self.assertIsNot(package_a, package_a_im)
self.assertIs(package_a.subpackage, package_a_im.subpackage)
@skipIf(version_info.major < 3 or version_info.minor < 7, 'mock uses __getattr__ a 3.7 feature')
def test_mock(self):
filename = self.temp()
with PackageExporter(filename, verbose=False) as he:
he.mock_modules(['package_a.subpackage', 'module_a'])
he.save_module('package_a')
hi = PackageImporter(filename)
import package_a.subpackage
_ = package_a.subpackage
import module_a
_ = module_a
m = hi.import_module('package_a.subpackage')
r = m.result
with self.assertRaisesRegex(NotImplementedError, 'was mocked out'):
r()
@skipIf(version_info.major < 3 or version_info.minor < 7, 'mock uses __getattr__ a 3.7 feature')
def test_custom_requires(self):
filename = self.temp()
class Custom(PackageExporter):
def require_module(self, name, dependencies):
if name == 'module_a':
self.mock_module('module_a')
elif name == 'package_a':
self.save_source_string('package_a', 'import module_a\nresult = 5\n')
else:
raise NotImplementedError('wat')
with Custom(filename, verbose=False) as he:
he.save_source_string('main', 'import package_a\n')
hi = PackageImporter(filename)
hi.import_module('module_a').should_be_mocked
bar = hi.import_module('package_a')
self.assertEqual(bar.result, 5)
@skipIfNoTorchVision
def test_resnet(self):
resnet = resnet18()
f1 = self.temp()
# create a package that will save it along with its code
with PackageExporter(f1, verbose=False) as e:
# put the pickled resnet in the package, by default
# this will also save all the code files references by
# the objects in the pickle
e.save_pickle('model', 'model.pkl', resnet)
# check th debug graph has something reasonable:
buf = StringIO()
debug_graph = e._write_dep_graph(failing_module='torch')
self.assertIn('torchvision.models.resnet', debug_graph)
# we can now load the saved model
i = PackageImporter(f1)
r2 = i.load_pickle('model', 'model.pkl')
# test that it works
input = torch.rand(1, 3, 224, 224)
ref = resnet(input)
self.assertTrue(torch.allclose(r2(input), ref))
# functions exist also to get at the private modules in each package
torchvision = i.import_module('torchvision')
f2 = self.temp()
# if we are doing transfer learning we might want to re-save
# things that were loaded from a package
with PackageExporter(f2, verbose=False) as e:
# We need to tell the exporter about any modules that
# came from imported packages so that it can resolve
# class names like torchvision.models.resnet.ResNet
# to their source code.
e.importers.insert(0, i.import_module)
# e.importers is a list of module importing functions
# that by default contains importlib.import_module.
# it is searched in order until the first success and
# that module is taken to be what torchvision.models.resnet
# should be in this code package. In the case of name collisions,
# such as trying to save a ResNet from two different packages,
# we take the first thing found in the path, so only ResNet objects from
# one importer will work. This avoids a bunch of name mangling in
# the source code. If you need to actually mix ResNet objects,
# we suggest reconstructing the model objects using code from a single package
# using functions like save_state_dict and load_state_dict to transfer state
# to the correct code objects.
e.save_pickle('model', 'model.pkl', r2)
i2 = PackageImporter(f2)
r3 = i2.load_pickle('model', 'model.pkl')
self.assertTrue(torch.allclose(r3(input), ref))
# test we can load from a directory
import zipfile
zf = zipfile.ZipFile(f1, 'r')
with TemporaryDirectory() as td:
zf.extractall(path=td)
iz = PackageImporter(str(Path(td) / Path(f1).name))
r4 = iz.load_pickle('model', 'model.pkl')
self.assertTrue(torch.allclose(r4(input), ref))
@skipIfNoTorchVision
def test_model_save(self):
# This example shows how you might package a model
# so that the creator of the model has flexibility about
# how they want to save it but the 'server' can always
# use the same API to load the package.
# The convension is for each model to provide a
# 'model' package with a 'load' function that actual
# reads the model out of the archive.
# How the load function is implemented is up to the
# the packager.
# get our normal torchvision resnet
resnet = resnet18()
f1 = self.temp()
# Option 1: save by pickling the whole model
# + single-line, similar to torch.jit.save
# - more difficult to edit the code after the model is created
with PackageExporter(f1, verbose=False) as e:
e.save_pickle('model', 'pickled', resnet)
# note that this source is the same for all models in this approach
# so it can be made part of an API that just takes the model and
# packages it with this source.
src = """\
import resources # gives you access to the importer from within the package
# server knows to call model.load() to get the model,
# maybe in the future it passes options as arguments by convension
def load():
return resources.load_pickle('model', 'pickled')
"""
e.save_source_string('model', src, is_package=True)
f2 = self.temp()
# Option 2: save with state dict
# - more code to write to save/load the model
# + but this code can be edited later to adjust adapt the model later
with PackageExporter(f2, verbose=False) as e:
e.save_pickle('model', 'state_dict', resnet.state_dict())
src = """\
import resources # gives you access to the importer from within the package
from torchvision.models.resnet import resnet18
def load():
# if you want, you can later edit how resnet is constructed here
# to edit the model in the package, while still loading the original
# state dict weights
r = resnet18()
state_dict = resources.load_pickle('model', 'state_dict')
r.load_state_dict(state_dict)
return r
"""
e.save_source_string('model', src, is_package=True)
# regardless of how we chose to package, we can now use the model in a server in the same way
input = torch.rand(1, 3, 224, 224)
results = []
for m in [f1, f2]:
importer = PackageImporter(m)
the_model = importer.import_module('model').load()
r = the_model(input)
results.append(r)
self.assertTrue(torch.allclose(*results))
if __name__ == '__main__':
main()