Files
pytorch/c10/core/SymInt.cpp
cyy 203dd18c5c Bump Clang-tidy to 19.1.4 (#148648)
Because Clang-tidy 19 has more powerful clang-analyzer checks to detect subtle bugs. New checks such as misc-use-internal-linkage can help identify potential static variables or functions, thus reducing binary sizes.

Some new checks are disabled temporarily for later enabling. Additional warnings have been fixed or suppressed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148648
Approved by: https://github.com/Skylion007
2025-03-10 17:32:30 +00:00

283 lines
9.8 KiB
C++

#include <c10/core/ConstantSymNodeImpl.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/safe_numerics.h>
#include <functional>
namespace c10 {
// Precondition: data_ has a large negative number that should be
// treated as a constant. It is NOT a valid pointer. In other words,
// SymInt has temporarily violated invariants
// Postcondition: invariants on SymInt are fixed
void SymInt::promote_to_negative() {
auto s =
SymInt(SymNode(c10::make_intrusive<ConstantSymNodeImpl<int64_t>>(data_)));
// Similar to move operator=, but do NOT release data_
data_ = s.data_;
s.data_ = 0;
}
SymNode SymInt::toSymNode() const {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
is_heap_allocated(), "SymInt::toSymNode is_heap_allocated");
return SymNode::reclaim_copy(toSymNodeImplUnowned());
}
SymInt::SymInt(SymNode sin_sp) {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
sin_sp->is_int(), "SymInt::SymInt sin_sp->is_int()");
auto ptr =
static_cast<uint64_t>(reinterpret_cast<uintptr_t>(sin_sp.release()));
auto rep = (ptr & ~MASK) | IS_SYM;
data_ = static_cast<int64_t>(rep);
}
bool SymInt::has_hint() const {
if (!is_heap_allocated()) {
return true;
}
return toSymNodeImplUnowned()->has_hint();
}
#define DEFINE_BINARY(API, OP, METHOD, RET) \
RET SymInt::API(const SymInt& sci) const { \
if (auto ma = maybe_as_int()) { \
if (auto mb = sci.maybe_as_int()) { \
return RET(OP(*ma, *mb)); \
} else { \
auto b = sci.toSymNode(); \
return RET(b->wrap_int(*ma)->METHOD(b)); \
} \
} else { \
if (auto mb = sci.maybe_as_int()) { \
auto a = toSymNodeImplUnowned(); \
return RET(a->METHOD(a->wrap_int(*mb))); \
} else { \
return RET(toSymNodeImplUnowned()->METHOD(sci.toSymNode())); \
} \
} \
}
DEFINE_BINARY(operator+, std::plus<>(), add, SymInt)
DEFINE_BINARY(operator-, std::minus<>(), sub, SymInt)
DEFINE_BINARY(operator*, std::multiplies<>(), mul, SymInt)
DEFINE_BINARY(operator/, std::divides<>(), floordiv, SymInt)
DEFINE_BINARY(operator%, std::modulus<>(), mod, SymInt)
DEFINE_BINARY(sym_eq, std::equal_to<>(), eq, SymBool)
DEFINE_BINARY(sym_ne, std::not_equal_to<>(), ne, SymBool)
DEFINE_BINARY(sym_lt, std::less<>(), lt, SymBool)
DEFINE_BINARY(sym_le, std::less_equal<>(), le, SymBool)
DEFINE_BINARY(sym_gt, std::greater<>(), gt, SymBool)
DEFINE_BINARY(sym_ge, std::greater_equal<>(), ge, SymBool)
DEFINE_BINARY(min, std::min, sym_min, SymInt)
DEFINE_BINARY(max, std::max, sym_max, SymInt)
SymInt::operator SymFloat() const {
if (auto ma = maybe_as_int()) {
return SymFloat(double(*ma));
} else {
return SymFloat(toSymNodeImplUnowned()->sym_float());
}
}
bool SymInt::is_same(const SymInt& other) const {
if (is_heap_allocated() != other.is_heap_allocated()) {
return false;
}
// Both not heap allocated
if (!is_heap_allocated() && this->operator!=(other)) {
return false;
}
// Both heap allocated
if (is_heap_allocated() &&
toSymNodeImplUnowned() != other.toSymNodeImplUnowned()) {
return false;
}
return true;
}
SymNode SymInt::wrap_node(const SymNode& base) const {
if (auto ma = maybe_as_int()) {
return base->wrap_int(*ma);
} else {
return toSymNode();
}
}
SymInt SymInt::clone() const {
if (auto ma = maybe_as_int()) {
return SymInt(*ma);
} else {
return SymInt(toSymNodeImplUnowned()->clone());
}
}
int64_t SymInt::guard_int(const char* file, int64_t line) const {
if (auto ma = maybe_as_int()) {
return *ma;
} else {
return toSymNodeImplUnowned()->guard_int(file, line);
}
}
bool SymInt::expect_size(const char* file, int64_t line) const {
if (auto ma = maybe_as_int()) {
return *ma >= 0;
} else {
return toSymNodeImplUnowned()->expect_size(file, line);
}
}
SymInt operator-(const SymInt& s) {
if (auto ma = s.maybe_as_int()) {
const auto val = *ma;
// Note: Result of `-std::numeric_limits<decltype(val)>::min()` is undefined
// But on many platforms it equals to self + setting Carry/Overflow flags
// Which in opimized code affects results of `check_range` condition
// Workaround by using ternary that avoids alterning the flags
#if C10_HAS_BUILTIN_OVERFLOW()
std::decay_t<decltype(val)> out = 0;
if (C10_UNLIKELY(__builtin_sub_overflow(out, val, &out))) {
return SymInt(val);
}
return SymInt(out);
#else
constexpr auto val_min = std::numeric_limits<decltype(val)>::min();
return SymInt(val != val_min ? -val : val_min);
#endif
} else {
return SymInt(s.toSymNodeImplUnowned()->neg());
}
}
void SymInt::operator*=(const SymInt& sci) {
*this = *this * sci;
}
void SymInt::operator/=(const SymInt& sci) {
*this = *this / sci;
}
void SymInt::operator+=(const SymInt& sci) {
*this = *this + sci;
}
std::ostream& operator<<(std::ostream& os, const SymInt& s) {
if (s.is_heap_allocated()) {
os << s.toSymNodeImplUnowned()->str();
} else {
os << s.as_int_unchecked();
}
return os;
}
// This template lets us not do a refcount bump when we do an
// identity conversion
template <typename T>
struct Convert {};
template <>
struct Convert<SymInt> {
const SymInt& operator()(const SymInt& a) {
return a;
}
};
template <>
struct Convert<SymFloat> {
SymFloat operator()(const SymInt& a) {
return a;
}
};
#define DEFINE_SYMINT_OP_INTONLY(scalar_t, RetTy) \
RetTy operator%(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) % RetTy(b); \
} \
RetTy operator%(scalar_t a, const SymInt& b) { \
return RetTy(a) % Convert<RetTy>()(b); \
}
#define DEFINE_SYMINT_OP(scalar_t, RetTy) \
RetTy operator+(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) + RetTy(b); \
} \
RetTy operator-(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) - RetTy(b); \
} \
RetTy operator*(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) * RetTy(b); \
} \
RetTy operator/(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) / RetTy(b); \
} \
RetTy operator+(scalar_t a, const SymInt& b) { \
return RetTy(a) + Convert<RetTy>()(b); \
} \
RetTy operator-(scalar_t a, const SymInt& b) { \
return RetTy(a) - Convert<RetTy>()(b); \
} \
RetTy operator*(scalar_t a, const SymInt& b) { \
return RetTy(a) * Convert<RetTy>()(b); \
} \
RetTy operator/(scalar_t a, const SymInt& b) { \
return RetTy(a) / Convert<RetTy>()(b); \
} \
bool operator==(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) == RetTy(b); \
} \
bool operator!=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) != RetTy(b); \
} \
bool operator<(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) < RetTy(b); \
} \
bool operator<=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) <= RetTy(b); \
} \
bool operator>(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) > RetTy(b); \
} \
bool operator>=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) >= RetTy(b); \
} \
bool operator==(scalar_t a, const SymInt& b) { \
return RetTy(a) == Convert<RetTy>()(b); \
} \
bool operator!=(scalar_t a, const SymInt& b) { \
return RetTy(a) != Convert<RetTy>()(b); \
} \
bool operator<(scalar_t a, const SymInt& b) { \
return RetTy(a) < Convert<RetTy>()(b); \
} \
bool operator<=(scalar_t a, const SymInt& b) { \
return RetTy(a) <= Convert<RetTy>()(b); \
} \
bool operator>(scalar_t a, const SymInt& b) { \
return RetTy(a) > Convert<RetTy>()(b); \
} \
bool operator>=(scalar_t a, const SymInt& b) { \
return RetTy(a) >= Convert<RetTy>()(b); \
}
DEFINE_SYMINT_OP_INTONLY(int64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(int32_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint32_t, SymInt)
DEFINE_SYMINT_OP(int64_t, SymInt)
DEFINE_SYMINT_OP(int32_t, SymInt) // make sure constants work
DEFINE_SYMINT_OP(uint64_t, SymInt)
DEFINE_SYMINT_OP(uint32_t, SymInt)
DEFINE_SYMINT_OP(double, SymFloat)
DEFINE_SYMINT_OP(float, SymFloat) // just for completeness
#if defined(__APPLE__)
DEFINE_SYMINT_OP_INTONLY(size_t, SymInt) // needed for osx
DEFINE_SYMINT_OP(size_t, SymInt) // needed for osx
#endif
} // namespace c10