mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes torchbench models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which removes timm and huggingface models from torchbench. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164816 Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
137 lines
4.0 KiB
Python
137 lines
4.0 KiB
Python
import argparse
|
|
import os
|
|
import sys
|
|
import textwrap
|
|
|
|
import pandas as pd
|
|
|
|
|
|
# Hack to have something similar to DISABLED_TEST. These models are flaky.
|
|
|
|
flaky_models = {
|
|
"yolov3",
|
|
"detectron2_maskrcnn_r_101_c4",
|
|
"XGLMForCausalLM", # discovered in https://github.com/pytorch/pytorch/pull/128148
|
|
"detectron2_fcos_r_50_fpn",
|
|
}
|
|
|
|
|
|
def get_field(csv, model_name: str, field: str):
|
|
try:
|
|
return csv.loc[csv["name"] == model_name][field].item()
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def check_graph_breaks(actual_csv, expected_csv, expected_filename):
|
|
failed = []
|
|
improved = []
|
|
|
|
if "rocm" in expected_filename:
|
|
flaky_models.update(
|
|
{
|
|
"alexnet",
|
|
"demucs",
|
|
"densenet121",
|
|
"detectron2_fcos_r_50_fpn",
|
|
"doctr_det_predictor",
|
|
"doctr_reco_predictor",
|
|
"levit_128",
|
|
"llava",
|
|
"microbench_unbacked_tolist_sum",
|
|
"resnet50",
|
|
"resnet152",
|
|
"sam",
|
|
"sam_fast",
|
|
"stable_diffusion_text_encoder",
|
|
"stable_diffusion_unet",
|
|
"timm_efficientdet",
|
|
"torchrec_dlrm",
|
|
"vgg16",
|
|
# LLM
|
|
"meta-llama/Llama-3.2-1B",
|
|
"google/gemma-2-2b",
|
|
"google/gemma-3-4b-it",
|
|
"openai/whisper-tiny",
|
|
"Qwen/Qwen3-0.6B",
|
|
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
"openai/gpt-oss-20b",
|
|
}
|
|
)
|
|
|
|
for model in actual_csv["name"]:
|
|
graph_breaks = get_field(actual_csv, model, "graph_breaks")
|
|
expected_graph_breaks = get_field(expected_csv, model, "graph_breaks")
|
|
flaky = model in flaky_models
|
|
|
|
if expected_graph_breaks is None:
|
|
status = "MISSING:"
|
|
improved.append(model)
|
|
elif graph_breaks == expected_graph_breaks:
|
|
status = "PASS_BUT_FLAKY" if flaky else "PASS"
|
|
print(f"{model:34} {status}")
|
|
continue
|
|
elif graph_breaks > expected_graph_breaks:
|
|
if flaky:
|
|
status = "FAIL_BUT_FLAKY:"
|
|
else:
|
|
status = "FAIL:"
|
|
failed.append(model)
|
|
elif graph_breaks < expected_graph_breaks:
|
|
if flaky:
|
|
status = "IMPROVED_BUT_FLAKY:"
|
|
else:
|
|
status = "IMPROVED:"
|
|
improved.append(model)
|
|
print(
|
|
f"{model:34} {status:19} graph_breaks={graph_breaks}, expected={expected_graph_breaks}"
|
|
)
|
|
|
|
msg = ""
|
|
if failed or improved:
|
|
if failed:
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
Error: {len(failed)} models have new dynamo graph breaks:
|
|
{" ".join(failed)}
|
|
|
|
"""
|
|
)
|
|
if improved:
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
Improvement: {len(improved)} models have fixed dynamo graph breaks:
|
|
{" ".join(improved)}
|
|
|
|
"""
|
|
)
|
|
sha = os.getenv("SHA1", "{your CI commit sha}")
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
If this change is expected, you can update `{expected_filename}` to reflect the new baseline.
|
|
from pytorch/pytorch root, run
|
|
`python benchmarks/dynamo/ci_expected_accuracy/update_expected.py {sha}`
|
|
and then `git add` the resulting local changes to expected CSVs to your commit.
|
|
"""
|
|
)
|
|
return failed or improved, msg
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--actual", type=str, required=True)
|
|
parser.add_argument("--expected", type=str, required=True)
|
|
args = parser.parse_args()
|
|
|
|
actual = pd.read_csv(args.actual)
|
|
expected = pd.read_csv(args.expected)
|
|
|
|
failed, msg = check_graph_breaks(actual, expected, args.expected)
|
|
if failed:
|
|
print(msg)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|