Files
pytorch/torch/_subclasses/fake_tensor.py
Edward Z. Yang 1ff52225f1 Unify SymIntNode and SymFloatNode into SymNode (#87817)
This refactor was prompted by challenges handling mixed int/float
operations in C++.  A previous version of this patch
added overloads for each permutation of int/float and was unwieldy
https://github.com/pytorch/pytorch/pull/87722/  This PR takes a different
approach.

The general outline of the patch is to combine the C++ types SymIntNode
and SymFloatNode into a single type, SymNode.  This is type erased; we
no longer know statically at C++ if we have an int/float and have to test
it with the is_int()/is_float() virtual methods.  This has a number of
knock on effects.

- We no longer have C++ classes to bind to Python.  Instead, we take an
  entirely new approach to our Python API, where we have a SymInt/SymFloat
  class defined entirely in Python, which hold a SymNode (which corresponds
  to the C++ SymNode).  However, SymNode is not pybind11-bound; instead,
  it lives as-is in Python, and is wrapped into C++ SymNode using PythonSymNode
  when it goes into C++.  This implies a userland rename.

  In principle, it is also possible for the canonical implementation of SymNode
  to be written in C++, and then bound to Python with pybind11 (we have
  this code, although it is commented out.)  However, I did not implement
  this as we currently have no C++ implementations of SymNode.

  Because we do return SymInt/SymFloat from C++ bindings, the C++ binding
  code needs to know how to find these classes.  Currently, this is done
  just by manually importing torch and getting the attributes.

- Because SymInt/SymFloat are easy Python wrappers, __sym_dispatch__ now
  takes SymInt/SymFloat, rather than SymNode, bringing it in line with how
  __torch_dispatch__ works.

Some miscellaneous improvements:

- SymInt now has a constructor that takes SymNode.  Note that this
  constructor is ambiguous if you pass in a subclass of SymNode,
  so an explicit downcast is necessary.  This means toSymFloat/toSymInt
  are no more.  This is a mild optimization as it means rvalue reference
  works automatically.

- We uniformly use the caster for c10::SymInt/SymFloat, rather than
  going the long way via the SymIntNode/SymFloatNode.

- Removed some unnecessary toSymInt/toSymFloat calls in normalize_*
  functions, pretty sure this doesn't do anything.

- guard_int is now a free function, since to guard on an int you cannot
  assume the method exists.  A function can handle both int and SymInt
  inputs.

- We clean up the magic method definition code for SymInt/SymFloat/SymNode.
  ONLY the user classes (SymInt/SymFloat) get magic methods; SymNode gets
  plain methods; this is to help avoid confusion between the two types.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87817
Approved by: https://github.com/albanD, https://github.com/anjali411
2022-10-27 20:56:02 +00:00

1012 lines
38 KiB
Python

import contextlib
import functools
import itertools
import sys
import warnings
import weakref
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union
import torch
from torch._ops import OpOverload
from torch._subclasses.meta_utils import MetaConverter, WeakTensorRefKey
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import PyTree, tree_flatten, tree_map
pytree = torch.utils._pytree
T = TypeVar("T")
TensorWeakRef = Any
aten = torch.ops.aten
CONSTANT_NUMEL_LIMIT = 1
@dataclass
class UnsupportedFakeTensorException(RuntimeError):
reason: str
@dataclass
class DynamicOutputShapeException(RuntimeError):
func: OpOverload
@dataclass
class DataDependentOutputException(RuntimeError):
func: OpOverload
_device_not_kwarg_ops = (
aten._resize_output_.default,
aten._nested_tensor_from_tensor_list.default,
aten._nested_tensor_from_tensor_list.out,
aten.pin_memory.default,
aten.is_pinned.default,
aten.to.device,
aten.to.prim_Device,
aten._pin_memory.default,
aten._pin_memory.out,
aten._resize_output.default,
aten._resize_output.out,
)
# this op is never actually used
_non_kwarg_device_constructors = (aten._list_to_tensor,)
def contains_tensor_types(type):
tensor_type = torch._C.TensorType.get()
return type.isSubtypeOf(tensor_type) or any(
contains_tensor_types(e) for e in type.containedTypes()
)
_like_tensor_constructors = (
aten.empty_like.default,
aten.empty_like.out,
aten.full_like.default,
aten.full_like.out,
aten.ones_like.default,
aten.ones_like.out,
aten.rand_like.default,
aten.rand_like.out,
aten.randn_like.default,
aten.randn_like.out,
aten.randint_like.default,
aten.randint_like.out,
aten.randint_like.low_dtype,
aten.randint_like.low_dtype_out,
aten.zeros_like.default,
aten.zeros_like.out,
aten.new_empty.default,
aten.new_empty.out,
aten.new_empty_strided.default,
aten.new_empty_strided.out,
aten.new_full.default,
aten.new_full.out,
aten.new_zeros.default,
aten.new_zeros.out,
aten.new_ones.default,
aten.new_ones.out,
)
@functools.lru_cache(None)
def _is_tensor_constructor(func: OpOverload):
assert isinstance(func, OpOverload)
schema = func._schema
if any(contains_tensor_types(arg.type) for arg in schema.arguments):
return False
# TODO: no real reason to restrict multiple outputs
return (
len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get()
)
@functools.lru_cache(None)
def get_schema_info(func):
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
# many of the decompositions registered to torch/_prims do not at the moment model
# aliasing or strides, so as an incremental step, just enable the decompositions in
# torch/_decomp/decompositions.py.
# decomps are used for aot autograd tracing so we would like to unify on their
# implementation and add additional testing to them
@functools.lru_cache(None)
def torch_decomp_decompositions(func):
from torch._decomp import decomposition_table
decompositions = torch._decomp.decompositions
decomp_attrs = [getattr(decompositions, attr) for attr in dir(decompositions)]
return decomposition_table[func] in decomp_attrs
def tree_flatten_only(ty: Type[T], pytree: PyTree):
flat_vals, _ = tree_flatten(pytree)
return [elem for elem in flat_vals if isinstance(elem, ty)]
# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakTensorRefKey` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter(object):
tensor_memo: weakref.WeakValueDictionary
meta_converter: MetaConverter
constant_storage_mapping: Dict[StorageWeakRef, List[TensorWeakRef]]
def __init__(self):
# FakeTensors store the FakeTensorMode which in turn stores a
# FakeTensor, so we need to hold a weak reference to the FakeTensor
# otherwise we would induce a circular reference
self.tensor_memo = weakref.WeakValueDictionary()
self.meta_converter = MetaConverter()
# map from to storage to corresponding constant tensors
self.constant_storage_mapping = {}
def add_constant_storage_mapping(self, fake_tensor):
# when you have a constant, aliased tensor:
# const_tensor.add_(torch.rand([1]))
# all aliases of it must become no longer const
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
weak_st = StorageWeakRef(fake_tensor.constant.storage())
# we need a map from a weak storage to all of its corresponding
# constant tensors. python doesn't have the weak value equivalent
# of defaultdict(list), so we are using a WeakValueDictionary as one
if weak_st not in self.constant_storage_mapping:
self.constant_storage_mapping[weak_st] = []
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
def invalidate_constant_aliases(self, tensor):
assert not isinstance(tensor, FakeTensor)
weak_st = StorageWeakRef(tensor.storage())
if weak_st not in self.constant_storage_mapping:
return
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
ten = weak_tensor_ref()
if ten is not None:
ten._fix_weakref()
ten.constant = None
del self.constant_storage_mapping[weak_st]
def _get_memo(self, t):
if WeakTensorRefKey(t) in self.tensor_memo:
out = self.tensor_memo[WeakTensorRefKey(t)]
out._fix_weakref()
return out
return None
def set_tensor_memo(self, t, v):
th = WeakTensorRefKey(t)
# hold a weak ref to self, otherwise it will be kept alive
# by the del_ten closure
self_weak_ref = weakref.ref(self)
def del_ten():
self_ref = self_weak_ref()
if self_ref is None:
return
# on shutdown, th may not be in memo
self_ref.tensor_memo.pop(th, None)
weakref.finalize(t, del_ten)
self.tensor_memo[th] = v
def from_real_tensor(self, fake_mode, t, make_constant=False, shape_env=None):
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
existing_device = t.device
# not yet supported in metatensors
if t.is_quantized:
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
with no_dispatch():
meta_t = self.meta_converter(t, shape_env=shape_env)
if meta_t.device.type != "meta":
raise UnsupportedFakeTensorException("meta converter nyi")
out = FakeTensor(
fake_mode,
meta_t,
existing_device,
constant=t if make_constant else None,
)
out.requires_grad_(t.requires_grad)
if make_constant:
self.add_constant_storage_mapping(out)
if type(t) is torch.nn.Parameter:
assert not make_constant
out = torch.nn.Parameter(out, requires_grad=out.requires_grad) # type: ignore[assignment]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
grad_not_none = t.grad is not None
if grad_not_none:
out.grad = self.from_real_tensor(fake_mode, t.grad, shape_env=shape_env)
self.set_tensor_memo(t, out)
return out
def from_meta_and_device(self, fake_mode, t, device):
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
out = FakeTensor(fake_mode, t, device)
self.set_tensor_memo(t, out)
return out
# There are two ways to call this. First, you can have manually constructed
# a meta tensor and you need to turn it into a fake tensor. In that case,
# pass a meta tensor and a device argument. Alternately, you can have a
# real tensor that you need to convert into a fake tensor; in that case,
# omit the device.
#
# The disallowed case: if you specify the device, it MUST be a meta tensor.
# However, you're allowed to pass a meta tensor to be turned into a fake
# tensor; although an odd thing to do, this can occur if you're doing
# cross ref testing and the inner test is already operating on meta tensors
def __call__(
self, fake_mode, t, device=None, *, make_constant=False, shape_env=None
):
if device is None:
return self.from_real_tensor(
fake_mode, t, make_constant, shape_env=shape_env
)
else:
assert make_constant is False
assert t.device.type == "meta"
return self.from_meta_and_device(fake_mode, t, device)
op_implementations = []
def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]):
def impl_decorator(op_impl):
global op_implementations
if isinstance(run_impl_check, OpOverload):
op_implementations.append((lambda func: func == run_impl_check, op_impl))
else:
op_implementations.append((run_impl_check, op_impl))
return op_impl
return impl_decorator
@register_op_impl(
lambda func: (_is_tensor_constructor(func) or func in _like_tensor_constructors)
)
def constructors(fake_mode, func, *args, **kwargs):
assert func not in _non_kwarg_device_constructors
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
if func in _like_tensor_constructors:
default_device = new_kwargs["input"].device
# TODO: file issue
args = (new_kwargs.pop("input"),)
else:
# cpu is default device if none is specified
default_device = torch.device("cpu")
args = ()
out_device = new_kwargs.pop("device", None)
out_device = out_device if out_device is not None else default_device
new_kwargs["device"] = torch.device("meta")
r = func(*args, **new_kwargs)
return FakeTensor(fake_mode, r, out_device)
@register_op_impl(lambda func: func in (aten.to.prim_Device, aten.to.device))
def non_kwarg_to(fake_mode, func, *args, **kwargs):
_, new_kwargs = normalize_function(
func, args, kwargs, normalize_to_only_use_kwargs=True
)
input_device = new_kwargs["device"]
out_device = input_device if input_device else new_kwargs["input"].device
new_kwargs["device"] = torch.device("meta")
inp = new_kwargs.pop("input")
r = func(inp, **new_kwargs)
return fake_mode.fake_tensor_converter(fake_mode, r, out_device)
# Dont default to default device handling,
# since the device of `the_template` is ignored
@register_op_impl(aten.resize_as_.default)
def resize_as_(fake_mode, func, *args, **kwargs):
return func(*args, **kwargs)
@register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default)
def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs):
# TODO: remove me
return constructors(fake_mode, func, *args, **kwargs)
# _to_copy fails when run with FakeTensors to cuda device
# TODO: debug
@register_op_impl(aten._to_copy.default)
def to_copy(fake_mode, func, *args, **kwargs):
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
input_device = new_kwargs.pop("device", None)
out_device = input_device if input_device else new_kwargs["input"].device
with in_kernel_invocation_manager(fake_mode):
input = new_kwargs.pop("input").to("meta")
return FakeTensor(fake_mode, aten._to_copy(input, **new_kwargs), out_device)
# index.Tensor data-dependent in only some conditions
@register_op_impl(
lambda func: torch.Tag.dynamic_output_shape in func.tags # type: ignore[attr-defined]
and func != aten.index.Tensor
)
def dyn_shape(fake_mode, func, *args, **kwargs):
raise DynamicOutputShapeException(func)
@register_op_impl(
lambda func: torch.Tag.data_dependent_output in func.tags # type: ignore[attr-defined]
)
def data_dep(fake_mode, func, *args, **kwargs):
if fake_mode.throw_on_data_dependent_ops:
raise DataDependentOutputException(func)
return NotImplemented
# Bool Indices get Expanded as Masks
# See: IndexingUtils.h:expandTensors
def check_no_bool_index_tensors(func, self, indices):
for index in indices:
if index is not None and index.dtype in (torch.bool, torch.uint8):
raise DynamicOutputShapeException(func)
def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs):
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
out_device = new_kwargs["input"].device
with in_kernel_invocation_manager(fake_mode):
out = func(*args, **kwargs)
return FakeTensor(fake_mode, out, out_device)
# Dont default to default device handling,
# Since op can take in non-zero sized cpu
# index tensors with cuda self
@register_op_impl(aten.index.Tensor)
def index_tensor(fake_mode, func, *args, **kwargs):
# dynamic shape op if indices are bool/uint8
check_no_bool_index_tensors(func, *args, **kwargs)
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
# takes in multiple-devices, dont default to default device handling
@register_op_impl(aten.index_put.default)
def index_put(fake_mode, func, *args, **kwargs):
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
# same with index_put, but return the input
@register_op_impl(aten.index_put_.default)
def index_put_(fake_mode, func, *args, **kwargs):
with in_kernel_invocation_manager(fake_mode):
out = func(*args, **kwargs)
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
return new_kwargs["input"]
@register_op_impl(lambda fn: fn in _device_not_kwarg_ops)
def nyi(fake_mode, func, *args, **kwargs):
assert func not in _device_not_kwarg_ops, f"NYI: {func}"
# Meta tensors give you the ability to run PyTorch code without having to
# actually do computation through tensors allocated on a `meta` device.
# Because the device is `meta`, meta tensors do not model device propagation.
# FakeTensor extends MetaTensors to also carry an additional `fake_device`
# which tracks devices that would have been used.
@contextlib.contextmanager
def in_kernel_invocation_manager(fake_mode):
# See: note [Fake Tensor Dispatch Keys]
prev_in_kernel = fake_mode.in_kernel_invocation
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
fake_mode.in_kernel_invocation = True
torch._C._set_meta_in_tls_dispatch_include(True)
try:
yield
finally:
fake_mode.in_kernel_invocation = prev_in_kernel
torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
del guard
class FakeTensor(torch.Tensor):
fake_device: torch.device
fake_mode: "FakeTensorMode"
constant: Optional[torch.Tensor]
# Note: [Fake Tensor Dispatch Keys]
# In order to model the behavior of device-specific autocast
# and autograd logic, we update the dispatch keys of FakeTensors
# to reflect their fake device. This includes the BackendComponent
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
# related Autocast and Autograd keys. __torch__dispatch__ sits below
# Autocast and Autograd, and is only invoked when we are at the
# kernel for the BackendComponent. Then, we add Meta to the
# thread-local dispatch include set to hit the meta kernel
# instead of the kernel of the BackendComponent for the fake device.
# The `device_for_backend_keys` does that below
@staticmethod
def __new__(cls, fake_mode, elem, device, constant=None):
return torch.Tensor._make_subclass(
cls,
elem,
elem.requires_grad,
dispatch_device=True,
device_for_backend_keys=device,
)
def __init__(
self,
fake_mode,
elem,
device: Union[torch.device, str],
constant: Optional[torch.Tensor] = None,
):
assert elem.device.type == "meta", elem.device.type
device = device if isinstance(device, torch.device) else torch.device(device)
# NB: it is fine, if a little confusing, for device to be meta
# (we are faking a meta tensor in that case). However, it often
# indicates some sort of confusion (e.g., you accidentally passed
# in a meta tensor when you should have passed in the real tensor).
# So by default we disallow meta, and if you are working in a situation
# where it is helpful (e.g., crossref testing) you can turn it back
# on
if not fake_mode.allow_meta:
assert device.type != "meta"
# normalize cuda device.
if device.type == "cuda" and device.index is None:
device = torch.device(f"cuda:{torch.cuda.current_device()}")
self.fake_device = device
self.fake_mode = fake_mode
self.constant = constant
@staticmethod
def from_tensor(t, fake_mode):
return fake_mode.from_tensor(t)
# TODO: resolve error in default __repr__
def __repr__(self):
with in_kernel_invocation_manager(self.fake_mode):
self_repr = super().__repr__()
return f"FakeTensor({self_repr}, {self.fake_device})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
# need to handle here to avoid infinite recursion
# see [in_kernel_invocation]
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# Because fake mode can return NotImplemented (if it sees a subclass
# it doesn't know how to deal with), this test here is important
# because the next dispatch after a fake mode will attempt to use
# subclasses of tensors to dispatch, and any FakeTensor arguments
# will be considered eligible.
if any(not issubclass(t, FakeTensor) and t is not torch.Tensor for t in types):
return NotImplemented
fake_mode = None
for arg in itertools.chain(tree_flatten(args)[0], tree_flatten(kwargs)[0]):
if isinstance(arg, FakeTensor):
if fake_mode is None:
fake_mode = arg.fake_mode
else:
assert fake_mode is arg.fake_mode, "Mixing modes NYI"
assert fake_mode is not None
with fake_mode: # type: ignore[attr-defined]
return func(*args, **kwargs)
@staticmethod
def _find_common_device(func, args, kwargs):
# cpu - zero-dim tensors can be called in cuda kernels,
# so overwrite the common_device if it the only existing
# device comes from a cpu zero-dim tensor
common_device = None
is_cpu_zero_dim = None
def cpu_zero_dim(t):
return t.device.type == "cpu" and t.dim() == 0
def merge_devices(t):
nonlocal common_device
nonlocal is_cpu_zero_dim
if not isinstance(t, FakeTensor):
return
if common_device is None:
common_device = t.device
is_cpu_zero_dim = cpu_zero_dim(t)
return
t_is_cpu_zero_dim = cpu_zero_dim(t)
if t.device == common_device:
if is_cpu_zero_dim:
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices !
# if current tensor is cpu 0 dim, defer to existing device
if t_is_cpu_zero_dim:
return
# current device is from cpu 0 dim tensor, overwrite
if is_cpu_zero_dim:
common_device = t.device
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices of non-zero dim tensors, throw
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
raise RuntimeError(
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
)
tree_map(merge_devices, args)
tree_map(merge_devices, kwargs)
# some functions that allow Python numbers to bind to Tensors
# if we have failed to find a device, and we're running one of these operators,
# we must have scalar only inputs
if (
torch._C._should_allow_numbers_as_tensors(
func.name().split("::")[-1].split(".")[0]
)
and common_device is None
):
common_device = torch.device("cpu")
assert common_device is not None, f"Could not find common device for {func}"
return common_device
__torch_function__ = torch._C._disabled_torch_function_impl
# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly incraese.
class FakeTensorMode(TorchDispatchMode):
def __init__(
self,
*,
allow_fallback_kernels=True,
allow_meta=False,
throw_on_data_dependent_ops=True,
shape_env=None,
):
self.allow_fallback_kernels = allow_fallback_kernels
self.fake_tensor_converter = FakeTensorConverter()
self.allow_meta = allow_meta
# TODO: delete arg and default to true. waiting on dynamo perf regression testing
self.throw_on_data_dependent_ops = throw_on_data_dependent_ops
# [in_kernel_invocation]
# when FakeTensor is invoked in user code, .device should return
# the fake_device of the tensor so that code such as as `if x.is_cuda`
# or torch.zeros([10, 10], device=x.device) continues to execute as if
# the FakeTensor were real. However, within kernel execution, we return
# the `Meta` device because all computation within the kernels should
# behave as if the Tensors are on meta devices. Kernels should allocate
# new tensors on meta devices, and checks like `is_meta` should return true.
# within python refs, we always return the real device by defining
# the device property
self.in_kernel_invocation = False
self.shape_env = shape_env
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
flat_arg_fake_tensors = tree_flatten_only(FakeTensor, (args, kwargs))
flat_symints = tree_flatten_only(torch.SymInt, (args, kwargs))
has_symbolic_sizes = (
any([i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors])
or len(flat_symints) > 0
)
converter = self.fake_tensor_converter
# If this is a lift, the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point
if func in self.lift_fns:
out = func(*args, **kwargs)
if self.may_turn_const(out):
with no_dispatch():
return converter(self, out.clone(), make_constant=True)
with no_dispatch():
flat_arg_tensors = tree_flatten_only(torch.Tensor, (args, kwargs))
# See [subclass inputs] below
# NB: If you're seeing a mysterious infinite loop involving fake
# tensor, it might be related to this line. Though I'm not sure
# how you'll know to read this comment, as this line won't show up
# in the stack trace.
if self.check_for_subclass(flat_arg_tensors):
return NotImplemented
# if we are in the dispatch mode, we will enter this function even if the inputs
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
# and just support constructors.
# this is generated from torch.tensor(), which does not use the
# dispatcher, to allow wrapper subclasses to wrap the new tensor
if func in self.lift_fns:
assert (
len(kwargs) == 0
and len(args) == 1
and type(args[0]) is torch.Tensor
), f"{args} {kwargs}"
return converter(self, args[0])
if self.check_for_non_fake(flat_arg_tensors):
raise Exception(
"Invoking operators with non-Fake Tensor inputs in FakeTensorMode is not yet supported. "
f"Please convert all Tensors to FakeTensors first. Found in {func}(*{args}, **{kwargs})"
)
# The current constant handling only support tracing systems
# (aot autograd, torchdynamo) where each operation is run consecutively.
# Because each operation is run in order, we can trace out and support
# sequences like: x = torch.tensor(0.); y = x.add_(1)
# Whenver a constant is written to but with inputs that cannot be evaluated
# statically, such as random_(), we invalidate all constants that alias the input
# We will rely on functionalization for use of fake tensors constants as persistent
# objects on an FX Graph.
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
if (
torch.Tag.nondeterministic_seeded not in func.tags # type: ignore[attr-defined]
and torch.Tag.inplace_view not in func.tags # type: ignore[attr-defined]
and all_constant
and len(flat_arg_fake_tensors) != 0
and not has_symbolic_sizes
):
with no_dispatch():
const_args, const_kwargs = pytree.tree_map_only(
FakeTensor, lambda t: t.constant, (args, kwargs)
)
out = func(*const_args, **const_kwargs)
all_constant = pytree.tree_all_only(
torch.Tensor, lambda t: self.may_turn_const(t), out
)
if all_constant:
return pytree.tree_map_only(
torch.Tensor,
lambda t: converter(self, t, make_constant=True),
out,
)
# we weren't able to turn outputs to constants,
# so invalidate all constants that might be aliases of the outputs
for ten in tree_flatten_only(torch.Tensor, out):
converter.invalidate_constant_aliases(ten)
# we are falling through to running non constant tensors, any input constant that
# is written to must be invalidated
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
from torch._decomp import decomposition_table
with self:
# Decomposes CompositeImplicitAutograd ops
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
# IDK: feels bad man, sym_numel on as_strided infinite loops otherwise
if (
has_symbolic_sizes
and func not in self.functions_with_cpp_meta_impl_that_support_symint
):
from torch._decomp import meta_table as meta_table
with no_dispatch():
if func == aten.size.default:
sys.stderr.write(
"Trying to call aten.size on a tensor with symbolic shapes. "
"It's likely that this is from calling tensor.shape in C++"
)
# We do this to allow for better error localization with `TORCH_SHOW_CPP_STACKTRACES=1`
return None
with self:
if func in meta_table:
r = meta_table[func](*args, **kwargs)
return r
if func in decomposition_table:
return decomposition_table[func](*args, **kwargs)
if (
func in decomposition_table
and torch_decomp_decompositions(func)
and all(not e.is_sparse for e in flat_arg_fake_tensors)
):
with self:
return decomposition_table[func](*args, **kwargs)
# prims already wrap FakeTensor inputs to FakeTensor outputs
# and do device logic, we dont need do anything but run them
# and ensure that Meta kernels are dispatched to (see)
# Fake Tensor Dispatch Keys
# TODO - we should be use the prim aten impl
if (
"prims::" in func._schema.name
and len(flat_arg_fake_tensors) != 0
and hasattr(func, "prim_meta_impl")
):
with self:
return func.prim_meta_impl(*args, **kwargs)
if has_symbolic_sizes:
if func not in self.functions_with_cpp_meta_impl_that_support_symint:
raise RuntimeError(
f"{func} - couldn't find symbolic meta function/decomposition"
)
with no_dispatch():
# special handling for funcs registered through `register_op_impl`,
# e.g., manipulating args on constructor calls to construct meta tensors
# and then afterwards wrapping them to a FakeTensor
for run_impl_check, op_impl in op_implementations:
if run_impl_check(func):
op_impl_out = op_impl(self, func, *args, **kwargs)
if op_impl_out != NotImplemented:
return op_impl_out
# run kernel registered to meta for func, which include
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
try:
with in_kernel_invocation_manager(self):
r = func(*args, **kwargs)
except NotImplementedError as not_implemented_error:
# no meta kernel registered, fallback to kernel for the device
if not self.allow_fallback_kernels:
raise not_implemented_error
return run_fallback_kernel(
self, func, args, kwargs, not_implemented_error
)
return self.wrap_meta_outputs_with_default_device_logic(
r, func, args, kwargs
)
# [subclass inputs]
# Suppose we enable fake tensor mode. This means that fake tensor
# mode will run first. But what if we do an operation that
# involves a tensor subclass that will desugar into normal tensor
# operations? Without returning NotImplemented, fake tensor mode will run first,
# decide that a conversion was made (since there was a non fake
# tensor argument), and report an error that converting non
# fake tensor is not supported. What we actually wanted to happen
# was to give the subclass a chance to figure out what it wants to
# before erroring out. Returning NotImplemented here allows this.
def check_for_subclass(self, flat_arg_tensors):
return any(
not isinstance(x, FakeTensor)
and type(x) is not torch.Tensor
and type(x) is not torch.nn.Parameter
for x in flat_arg_tensors
)
def check_for_non_fake(self, flat_arg_tensors):
return any(
isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor)
for x in flat_arg_tensors
)
def wrap_meta_outputs_with_default_device_logic(self, r, func, args, kwargs):
wrap = self.gen_wrap_fn(func, args, kwargs)
# if device is specified, use that
if kwargs.get("device", None):
return tree_map(partial(wrap, device=kwargs["device"]), r)
return tree_map(partial(wrap), r)
def gen_wrap_fn(self, func, args, kwargs):
converter = self.fake_tensor_converter
# Lazily initialized, in case there are no tensor returns
common_device = None
def wrap(e, device=None):
nonlocal common_device
if isinstance(e, torch.Tensor) and not isinstance(e, FakeTensor):
if common_device is None:
common_device = FakeTensor._find_common_device(func, args, kwargs)
return converter(self, e, device or common_device)
else:
return e
return wrap
@property
def functions_with_cpp_meta_impl_that_support_symint(self):
return [
aten.empty_strided.default,
aten.as_strided_scatter.default,
aten.as_strided.default,
aten.zeros.default,
aten.detach.default,
]
@property
def lift_fns(self):
return (aten.lift_fresh.default, aten.lift_fresh_copy.default)
def may_turn_const(self, t):
return (
t.numel() <= CONSTANT_NUMEL_LIMIT
and not t.is_sparse
and not isinstance(t, FakeTensor)
)
def invalidate_written_to_constants(
self, func, flat_arg_fake_tensors, args, kwargs
):
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
if any_constant and get_schema_info(func).is_mutable():
schema_info = get_schema_info(func)
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
for k, v in new_kwargs.items():
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
if (
isinstance(v, FakeTensor)
and schema_info.is_mutable(k)
and v.constant is not None
):
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
def from_tensor(self, tensor, static_shapes=False):
if static_shapes:
return self.fake_tensor_converter(self, tensor)
return self.fake_tensor_converter(self, tensor, shape_env=self.shape_env)
# NB: returns fake tensors
def run_fallback_kernel(fake_mode, func, args, kwargs, orig_not_implemented_exception):
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags: # type: ignore[attr-defined]
raise orig_not_implemented_exception
with no_dispatch():
inp_impls = {}
def to_real_tensor(e):
if isinstance(e, FakeTensor):
out = torch.zeros_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
args = tree_map(to_real_tensor, args)
kwargs = tree_map(to_real_tensor, kwargs)
r = func(*args, **kwargs)
tensor_impls = set()
storages = set()
for e in tree_flatten((args, kwargs))[0]:
if isinstance(e, torch.Tensor):
if not e.is_sparse:
storages.add(e.storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
for e in tree_flatten(r)[0]:
if id(e) not in inp_impls and (
isinstance(e, torch.Tensor)
and not e.is_sparse
and e.storage()._cdata in storages
):
raise orig_not_implemented_exception
def map_out(e):
if isinstance(e, torch.Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return fake_mode.fake_tensor_converter(fake_mode, e)
else:
return e
return tree_map(map_out, r)
# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
def __init__(self, fake_mode):
self.fake_mode = fake_mode
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
# clone will get called in Parameter deepcopy
if func == torch._C._TensorBase.clone:
return func(self.fake_mode.from_tensor(args[0]), **kwargs)
elif func == torch.Tensor.__deepcopy__:
assert len(args) == 2 and len(kwargs) == 0
tensor, memo = args
if id(tensor) in memo:
return memo[id(tensor)]
out = self.fake_mode.from_tensor(tensor)
memo[id(tensor)] = out
return out
else:
with torch._C.DisableTorchFunction():
return func(*args, **kwargs)