Files
pytorch/torch/_C/_distributed_autograd.pyi
Xuehai Pan 1fd119948e [3/3] Update .pyi Python stub files and enable 'UFMT' linter (#95268)
Changes:

- #95200

1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience.
2. Fix deep setting merge in `tools/vscode_settings.py`.

- #95267

3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`:

    `namedtuple + __annotations__`:

    ```python
    PackedSequence_ = namedtuple('PackedSequence_',
                                 ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])

    # type annotation for PackedSequence_ to make it compatible with TorchScript
    PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor,
                                       'sorted_indices': Optional[torch.Tensor],
                                       'unsorted_indices': Optional[torch.Tensor]}
    ```

    `Namedtuple`: Python 3.6+

    ```python
    class PackedSequence_(NamedTuple):
        data: torch.Tensor
        batch_sizes: torch.Tensor
        sorted_indices: Optional[torch.Tensor]
        unsorted_indices: Optional[torch.Tensor]
    ```

- => this PR: #95268

4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files.
5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95268
Approved by: https://github.com/huydhn
2023-03-01 23:50:56 +00:00

27 lines
908 B
Python

from typing import Any, Dict, List, Set
import torch
# This module is defined in torch/csrc/distributed/autograd/init.cpp
class DistAutogradContext:
def _context_id(self) -> int: ...
def _recv_functions(self) -> Dict[int, Any]: ...
def _send_functions(self) -> Dict[int, Any]: ...
def _known_worker_ids(self) -> Set[int]: ...
def _new_context() -> DistAutogradContext: ...
def _release_context(context_id: int) -> None: ...
def _get_max_id() -> int: ...
def _is_valid_context(worker_id: int) -> bool: ...
def _retrieve_context(context_id: int) -> DistAutogradContext: ...
def _current_context() -> DistAutogradContext: ...
def _init(worker_id: int) -> None: ...
def _get_debug_info() -> Dict[str, str]: ...
def backward(
context_id: int,
roots: List[torch.Tensor],
retain_graph=False,
) -> None: ...
def get_gradients(context_id: int) -> Dict[torch.Tensor, torch.Tensor]: ...