mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
**Summary** Today, the only way to have variable sequence length support in PyTorch attention is through nested tensors [here](https://docs.pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html#nestedtensor-and-dense-tensor-support). We also want to add an explicit lower-level API that provides variable sequence length support without padding/masking in SDPA. This PR builds out `varlen_attn`, the public API that users can call for the forward method, and `_varlen_attn`, the private API that calls into the Flash Attention/cuDNN backend. **Benchmarking** To benchmark, we compare runtime and TFLOPs against the current SDPA approach with padding. Settings: - 1 H100 machine - `batch_size=8`, `max_seq_len=2048`, `embed_dim=1024`, `num_heads=16` - dtype `torch.bfloat16` - `is_causal=False` - for variable length, we set sequences to be random multiples of 64 up to `max_seq_len` - 100 runs | | Variable Length API | SDPA | |--------|--------------------|----------| | Runtime | 0.21750560760498047 ms | 0.43171775817871094 ms | | TFLOPs | 231.812 | 320.840 | The sparsity is 0.453 which we can see matches the speedup we get from Varlen (approx 50%). TFLOPs remains around the same, with SDPA slightly larger due to potential higher overhead and total flops scaling with sequence length. **Testing** Run `python test/test_varlen_attention.py` for unit tests where we verify basic functionality and confirm numerical match between varlen outputs vs SDPA. **Next steps** Next steps from this PR (higher in the stack) include registering the private API `_varlen_attn` as a custom op, implementing backward support, and enabling cuDNN with correct numerics. (This stack builds on top of #162326) Pull Request resolved: https://github.com/pytorch/pytorch/pull/164502 Approved by: https://github.com/v0i0, https://github.com/drisspg
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
# Owner(s): ["module: sdpa"]
|
|
import unittest
|
|
from collections import namedtuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn.attention import varlen_attn
|
|
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_nn import NNTestCase
|
|
from torch.testing._internal.common_utils import parametrize, run_tests
|
|
|
|
|
|
VarlenShape = namedtuple(
|
|
"VarlenShape", ["batch_size", "max_seq_len", "embed_dim", "num_heads"]
|
|
)
|
|
|
|
default_tolerances = {
|
|
torch.float16: {"atol": 1e-1, "rtol": 1e-1},
|
|
torch.bfloat16: {"atol": 9e-2, "rtol": 5e-2},
|
|
torch.float32: {"atol": 1e-5, "rtol": 1.3e-6},
|
|
}
|
|
|
|
|
|
class AttentionBlock(nn.Module):
|
|
def __init__(
|
|
self, embed_dim: int, num_heads: int, device: torch.device, dtype: torch.dtype
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = embed_dim // num_heads
|
|
|
|
self.qkv_proj = nn.Linear(
|
|
embed_dim, 3 * embed_dim, bias=False, device=device, dtype=dtype
|
|
)
|
|
self.out_proj = nn.Linear(
|
|
embed_dim, embed_dim, bias=False, device=device, dtype=dtype
|
|
)
|
|
|
|
def forward_varlen(
|
|
self,
|
|
x_packed: torch.Tensor,
|
|
cu_seq: torch.Tensor,
|
|
max_len: int,
|
|
is_causal: bool = False,
|
|
):
|
|
qkv = self.qkv_proj(x_packed)
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
q = q.view(-1, self.num_heads, self.head_dim)
|
|
k = k.view(-1, self.num_heads, self.head_dim)
|
|
v = v.view(-1, self.num_heads, self.head_dim)
|
|
|
|
attn_out = varlen_attn(
|
|
q, k, v, cu_seq, cu_seq, max_len, max_len, is_causal=is_causal
|
|
)
|
|
attn_out = attn_out.view(-1, self.embed_dim)
|
|
|
|
return self.out_proj(attn_out)
|
|
|
|
def forward_sdpa(self, x_padded: torch.Tensor, is_causal: bool = False):
|
|
batch_size, seq_len, _ = x_padded.shape
|
|
|
|
qkv = self.qkv_proj(x_padded)
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=is_causal)
|
|
attn_out = (
|
|
attn_out.transpose(1, 2)
|
|
.contiguous()
|
|
.view(batch_size, seq_len, self.embed_dim)
|
|
)
|
|
|
|
return self.out_proj(attn_out)
|
|
|
|
|
|
def create_variable_length_batch(
|
|
shape: VarlenShape, device: torch.device, dtype: torch.dtype
|
|
):
|
|
seq_lengths = []
|
|
for _ in range(shape.batch_size):
|
|
length = torch.randint(1, shape.max_seq_len // 64 + 1, (1,)).item() * 64
|
|
seq_lengths.append(min(length, shape.max_seq_len))
|
|
|
|
seq_lengths = torch.tensor(seq_lengths, device=device)
|
|
total_tokens = seq_lengths.sum().item()
|
|
|
|
x_packed = torch.randn(total_tokens, shape.embed_dim, device=device, dtype=dtype)
|
|
|
|
cu_seq = torch.zeros(shape.batch_size + 1, device=device, dtype=torch.int32)
|
|
cu_seq[1:] = seq_lengths.cumsum(0)
|
|
|
|
max_len = seq_lengths.max().item()
|
|
x_padded = torch.zeros(
|
|
shape.batch_size, max_len, shape.embed_dim, device=device, dtype=dtype
|
|
)
|
|
|
|
start_idx = 0
|
|
for i, seq_len in enumerate(seq_lengths):
|
|
end_idx = start_idx + seq_len
|
|
x_padded[i, :seq_len] = x_packed[start_idx:end_idx]
|
|
start_idx = end_idx
|
|
|
|
return {
|
|
"seq_lengths": seq_lengths,
|
|
"cu_seq": cu_seq,
|
|
"x_packed": x_packed,
|
|
"x_padded": x_padded,
|
|
"max_len": max_len,
|
|
"total_tokens": total_tokens,
|
|
}
|
|
|
|
|
|
class TestVarlenAttention(NNTestCase):
|
|
@unittest.skipIf(
|
|
not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Flash Attention not supported"
|
|
)
|
|
@parametrize("dtype", [torch.bfloat16, torch.float16])
|
|
def test_basic_functionality(self, device, dtype):
|
|
torch.manual_seed(42)
|
|
|
|
shape = VarlenShape(batch_size=2, max_seq_len=512, embed_dim=1024, num_heads=16)
|
|
|
|
attention_block = AttentionBlock(
|
|
shape.embed_dim, shape.num_heads, device, dtype
|
|
)
|
|
|
|
total_tokens = shape.batch_size * shape.max_seq_len
|
|
x_packed = torch.randn(
|
|
total_tokens, shape.embed_dim, device=device, dtype=dtype
|
|
)
|
|
cu_seq = torch.tensor(
|
|
[0, shape.max_seq_len, total_tokens], device=device, dtype=torch.int32
|
|
)
|
|
|
|
output = attention_block.forward_varlen(
|
|
x_packed, cu_seq, shape.max_seq_len, is_causal=False
|
|
)
|
|
|
|
self.assertEqual(output.shape, (total_tokens, shape.embed_dim))
|
|
self.assertEqual(output.device, torch.device(device))
|
|
self.assertEqual(output.dtype, dtype)
|
|
|
|
@unittest.skipIf(
|
|
not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Flash Attention not supported"
|
|
)
|
|
@parametrize("dtype", [torch.bfloat16, torch.float16])
|
|
@parametrize("is_causal", [False, True])
|
|
def test_varlen_vs_sdpa(self, device, dtype, is_causal):
|
|
torch.manual_seed(42)
|
|
|
|
shape = VarlenShape(
|
|
batch_size=8, max_seq_len=2048, embed_dim=1024, num_heads=16
|
|
)
|
|
|
|
attention_block = AttentionBlock(
|
|
shape.embed_dim, shape.num_heads, device, dtype
|
|
)
|
|
|
|
variable_length_batch_data = create_variable_length_batch(shape, device, dtype)
|
|
|
|
varlen_output = attention_block.forward_varlen(
|
|
variable_length_batch_data["x_packed"],
|
|
variable_length_batch_data["cu_seq"],
|
|
variable_length_batch_data["max_len"],
|
|
is_causal=is_causal,
|
|
)
|
|
sdpa_output = attention_block.forward_sdpa(
|
|
variable_length_batch_data["x_padded"], is_causal=is_causal
|
|
)
|
|
|
|
tolerances = default_tolerances[dtype]
|
|
start_idx = 0
|
|
for i, seq_len in enumerate(variable_length_batch_data["seq_lengths"]):
|
|
end_idx = start_idx + seq_len
|
|
|
|
varlen_seq = varlen_output[start_idx:end_idx]
|
|
sdpa_seq = sdpa_output[i, :seq_len]
|
|
|
|
torch.testing.assert_close(varlen_seq, sdpa_seq, **tolerances)
|
|
start_idx = end_idx
|
|
|
|
|
|
device_types = ("cuda",)
|
|
|
|
instantiate_device_type_tests(TestVarlenAttention, globals(), only_for=device_types)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|