mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 14:15:01 +08:00
Simplify and speeds up isinstance calls by checking for multiple types at the same time. Pull Request resolved: https://github.com/pytorch/pytorch/pull/94419 Approved by: https://github.com/ezyang
186 lines
6.8 KiB
Python
186 lines
6.8 KiB
Python
from typing import Any, Dict, List, Tuple
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.nn.parallel._functions import _get_stream
|
|
from torch.nn.parallel.scatter_gather import ( # type: ignore[attr-defined]
|
|
_is_namedtuple,
|
|
)
|
|
from torch.nn.utils.rnn import PackedSequence
|
|
|
|
__all__ = [] # type: ignore[var-annotated]
|
|
|
|
def _pack_kwargs(*args: Any, **kwargs: Any) -> Tuple[Tuple[Any, ...], Tuple[str, ...]]:
|
|
"""
|
|
Turn argument list into separate key list and value list (unpack_kwargs does the opposite)
|
|
Inspiration: https://github.com/facebookresearch/fairscale/blob/eeb6684/fairscale/internal/containers.py#L70
|
|
Usage::
|
|
|
|
kwarg_keys, flat_args = pack_kwargs(1, 2, a=3, b=4)
|
|
assert kwarg_keys == ("a", "b")
|
|
assert flat_args == (1, 2, 3, 4)
|
|
args, kwargs = unpack_kwargs(kwarg_keys, flat_args)
|
|
assert args == (1, 2)
|
|
assert kwargs == {"a": 3, "b": 4}
|
|
Returns:
|
|
Tuple[Tuple[Any, ...], Tuple[str, ...]]: The first tuple element gives
|
|
gives both positional args and kwarg values, where the positional args
|
|
proceed kwarg values and kwarg values are ordered consistently with the
|
|
kwarg keys. The second tuple element gives the kwarg keys.
|
|
The second tuple element's length is at most the first tuple element's length.
|
|
"""
|
|
kwarg_keys: List[str] = []
|
|
flat_args: List[Any] = list(args)
|
|
for k, v in kwargs.items():
|
|
kwarg_keys.append(k)
|
|
flat_args.append(v)
|
|
|
|
return tuple(flat_args), tuple(kwarg_keys)
|
|
|
|
|
|
def _unpack_kwargs(flat_args: Tuple[Any, ...], kwarg_keys: Tuple[str, ...]) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
|
"""See _pack_kwargs."""
|
|
assert len(kwarg_keys) <= len(flat_args), f"too many keys {len(kwarg_keys)} vs. {len(flat_args)}"
|
|
if len(kwarg_keys) == 0:
|
|
return flat_args, {}
|
|
args = flat_args[: -len(kwarg_keys)]
|
|
kwargs = {k: v for k, v in zip(kwarg_keys, flat_args[-len(kwarg_keys) :])}
|
|
return args, kwargs
|
|
|
|
def _recursive_to(inputs, target_gpu, use_side_stream_for_tensor_copies):
|
|
r"""
|
|
Recursively moves input to the target_gpu.
|
|
"""
|
|
|
|
def to_map(obj):
|
|
if isinstance(obj, (torch.Tensor, PackedSequence)):
|
|
device = obj.data.device if isinstance(obj, PackedSequence) else obj.device
|
|
if device == torch.device("cuda", target_gpu):
|
|
return (obj,)
|
|
if not use_side_stream_for_tensor_copies:
|
|
return (obj.to(target_gpu),)
|
|
else:
|
|
# Perform CPU -> GPU copies in a background stream. This code is
|
|
# motivated from similar logic in torch/nn/parallel/_functions.py
|
|
stream = _get_stream(target_gpu)
|
|
with torch.cuda.stream(stream):
|
|
output = obj.to(target_gpu)
|
|
# synchronize with the copy stream
|
|
with torch.cuda.device(target_gpu):
|
|
current_stream = torch.cuda.current_stream()
|
|
# Sync the current stream with the copy stream
|
|
current_stream.wait_stream(stream)
|
|
# Ensure tensor memory is not reused until work on
|
|
# main stream is complete
|
|
if isinstance(obj, PackedSequence):
|
|
output.data.record_stream(current_stream) # type: ignore[arg-type]
|
|
else:
|
|
output.record_stream(current_stream) # type: ignore[arg-type]
|
|
return (output,)
|
|
if _is_namedtuple(obj):
|
|
return [type(obj)(*args) for args in zip(*map(to_map, obj))]
|
|
if isinstance(obj, tuple) and len(obj) > 0:
|
|
return list(zip(*map(to_map, obj)))
|
|
if isinstance(obj, list) and len(obj) > 0:
|
|
return [list(i) for i in zip(*map(to_map, obj))]
|
|
if isinstance(obj, dict) and len(obj) > 0:
|
|
return [type(obj)(i) for i in zip(*map(to_map, obj.items()))]
|
|
return [obj]
|
|
|
|
# Avoid reference cycle
|
|
try:
|
|
res = to_map(inputs)
|
|
finally:
|
|
to_map = None # type: ignore[assignment]
|
|
return res
|
|
|
|
|
|
def _to_kwargs(inputs, kwargs, device_id, use_side_stream_for_tensor_copies):
|
|
inputs = (
|
|
_recursive_to(inputs, device_id, use_side_stream_for_tensor_copies)
|
|
if inputs
|
|
else []
|
|
)
|
|
kwargs = (
|
|
_recursive_to(kwargs, device_id, use_side_stream_for_tensor_copies)
|
|
if kwargs
|
|
else []
|
|
)
|
|
if len(inputs) < len(kwargs):
|
|
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
|
|
elif len(kwargs) < len(inputs):
|
|
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
|
|
inputs = tuple(inputs)
|
|
kwargs = tuple(kwargs)
|
|
return inputs, kwargs
|
|
|
|
def _verify_param_shape_across_processes(process_group, tensors, logger=None):
|
|
return dist._verify_params_across_processes(process_group, tensors, logger)
|
|
|
|
def _sync_module_states(
|
|
module,
|
|
process_group,
|
|
broadcast_bucket_size,
|
|
src,
|
|
params_and_buffers_to_ignore,
|
|
):
|
|
"""
|
|
Syncs ``module``'s parameters and buffers state so that all ranks contain
|
|
the same module state across all ranks. Note that this API assumes that all
|
|
parameter shapes are consistent before running the synchronization. This can
|
|
be checked with ``_verify_param_shape_across_processes``.
|
|
"""
|
|
module_states = []
|
|
for name, param in module.named_parameters():
|
|
if name not in params_and_buffers_to_ignore:
|
|
module_states.append(param.detach())
|
|
|
|
for name, buffer in module.named_buffers():
|
|
if name not in params_and_buffers_to_ignore:
|
|
module_states.append(buffer.detach())
|
|
|
|
_sync_params_and_buffers(
|
|
process_group,
|
|
module_states,
|
|
broadcast_bucket_size,
|
|
src
|
|
)
|
|
|
|
def _sync_params_and_buffers(
|
|
process_group: dist.ProcessGroup,
|
|
module_states: List[torch.Tensor],
|
|
broadcast_bucket_size: int,
|
|
src: int,
|
|
):
|
|
"""
|
|
Synchronizes ``module_states`` (list of tensors) across all processes by
|
|
broadcasting them from rank 0.
|
|
"""
|
|
if len(module_states) > 0:
|
|
dist._broadcast_coalesced(
|
|
process_group, module_states, broadcast_bucket_size, src
|
|
)
|
|
|
|
def _replace_by_prefix(
|
|
state_dict: Dict[str, Any],
|
|
old_prefix: str,
|
|
new_prefix: str,
|
|
) -> None:
|
|
"""
|
|
Replace all keys that match a given old_prefix with a new_prefix (in-place).
|
|
|
|
Usage::
|
|
|
|
state_dict = {"layer.xyz": torch.tensor(1)}
|
|
replace_by_prefix_(state_dict, "layer.", "module.layer.")
|
|
assert state_dict == {"module.layer.xyz": torch.tensor(1)}
|
|
"""
|
|
if old_prefix == new_prefix:
|
|
raise ValueError("old_prefix and new_prefix must be distinct")
|
|
for key in list(state_dict.keys()):
|
|
if not key.startswith(old_prefix):
|
|
continue
|
|
new_key = new_prefix + key[len(old_prefix) :]
|
|
state_dict[new_key] = state_dict[key]
|
|
del state_dict[key]
|