Files
pytorch/torchgen/static_runtime/gen_static_runtime_ops.py
Aaron Gokaslan 1d6c5972c1 [BE]: Optimize min/max/sum comprehensions C419 (#123960)
Automatic fixes that replaces certain list comprehensions with generator ones where appropriate so that they are immediately consumed. This is preview functionality in ruff for rule C419 and it was automatically applied.

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123960
Approved by: https://github.com/malfet
2024-04-12 23:54:15 +00:00

227 lines
7.2 KiB
Python

import argparse
import itertools
import os
from typing import Sequence, TypeVar, Union
from libfb.py.log import set_simple_logging # type: ignore[import]
from torchgen import gen
from torchgen.context import native_function_manager
from torchgen.model import DispatchKey, NativeFunctionsGroup, NativeFunctionsViewGroup
from torchgen.static_runtime import config, generator
# Given a list of `grouped_native_functions` sorted by their op names, return a list of
# lists each of which groups ops that share the base name. For example, `mean` and
# `mean.dim` are grouped together by this function.
NativeGroupT = TypeVar(
"NativeGroupT",
bound=Union[NativeFunctionsGroup, NativeFunctionsViewGroup],
)
def group_functions_by_op_name(
grouped_native_functions: Sequence[NativeGroupT],
) -> Sequence[Sequence[NativeGroupT]]:
if not grouped_native_functions:
return []
groups = []
def is_supported(g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup]) -> bool:
with native_function_manager(g):
return generator.is_supported(g)
eligible_ops = (g for g in grouped_native_functions if is_supported(g))
groups = [
list(group)
for k, group in (
itertools.groupby(
eligible_ops,
key=config.func_name_base_str,
)
)
]
return groups
def clang_format(cpp_file_path: str) -> None:
import subprocess
subprocess.check_call(["clang-format", "-i", cpp_file_path])
def write_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
code = "\n".join(cpp_ops)
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
#include <torch/csrc/jit/runtime/static/ops.h>
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Parallel.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/EmbeddingBag.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/NonSymbolicBC.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/cpu/SerialStackImpl.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
#include <ATen/quantized/QTensorImpl.h>
#include <ATen/quantized/Quantizer.h>
#include <c10/core/ScalarType.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
namespace torch {{
namespace jit {{
{code}
}} // namespace jit
}} // namespace torch
"""
with open(file_path, "w") as f:
f.write(generated)
clang_format(file_path)
def write_test_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
code = "\n".join(cpp_ops)
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
#include <gtest/gtest.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/torch.h>
#include "test_utils.h"
using namespace caffe2;
using namespace torch;
using namespace torch::jit;
using namespace torch::jit::test;
using c10::IValue;
{code}
"""
with open(file_path, "w") as f:
f.write(generated)
clang_format(file_path)
def main() -> None:
parser = argparse.ArgumentParser(description="Generate ATen source files")
parser.add_argument(
"-s",
"--source-path",
help="path to source directory for ATen",
default="caffe2/aten/src/ATen",
)
parser.add_argument(
"-p",
"--generated-ops-cpp-path",
help="path to directory to generate op dispatcher .cpp file",
default="caffe2/torch/csrc/jit/runtime/static/generated_ops.cpp",
)
parser.add_argument(
"-t",
"--generated-ops-test-cpp-path",
help="path to directory to generate op dispatcher .cpp file",
default="caffe2/benchmarks/static_runtime/test_generated_ops.cc",
)
options = parser.parse_args()
native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml")
tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml")
parsed_yaml = gen.parse_native_yaml(native_yaml_path, tags_yaml_path)
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
op_generator = generator.GenOpDispatcher()
test_case_generator = generator.GenOpTestCase()
native_functions_groups = [
g
for g in gen.get_grouped_native_functions(native_functions)
if isinstance(g, NativeFunctionsGroup)
]
supported_functions_groups = group_functions_by_op_name(native_functions_groups)
out_variant_op_result = [
op_generator.out_variant(groups, backend_indices[DispatchKey.CPU])
for groups in supported_functions_groups
]
out_variant_test_result = [
test_case_generator.out_variant(groups) for groups in supported_functions_groups
]
native_functions_view_groups = [
g
for g in gen.get_grouped_by_view_native_functions(native_functions)
if isinstance(g, NativeFunctionsViewGroup)
]
supported_functions_view_groups = group_functions_by_op_name(
native_functions_view_groups
)
view_op_result = [
op_generator.view(groups, backend_indices[DispatchKey.CPU])
for groups in supported_functions_view_groups
]
view_test_result = [
test_case_generator.view(groups) for groups in supported_functions_view_groups
]
op_result = out_variant_op_result + ["\n\n"] + view_op_result
test_result = out_variant_test_result + ["\n\n"] + view_test_result
write_cpp(op_result, options.generated_ops_cpp_path)
write_test_cpp(test_result, options.generated_ops_test_cpp_path)
print(
"\ntotal grouped native ops: %d"
% len(gen.get_grouped_native_functions(native_functions))
)
print("grouped native ops with out variant: %d" % len(native_functions_groups))
supported_functions_num = sum(len(groups) for groups in supported_functions_groups)
print("generated functions groups with out variant: %d" % supported_functions_num)
print("\nview grouped native ops: %d" % len(native_functions_view_groups))
supported_view_functions_num = sum(
len(groups) for groups in supported_functions_view_groups
)
print("generated functions view groups: %d" % supported_view_functions_num)
print(
"\noverall generated : %d"
% (supported_functions_num + supported_view_functions_num)
)
if __name__ == "__main__":
set_simple_logging(escape_newlines=False)
main()