mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Automatic fixes that replaces certain list comprehensions with generator ones where appropriate so that they are immediately consumed. This is preview functionality in ruff for rule C419 and it was automatically applied. Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/123960 Approved by: https://github.com/malfet
227 lines
7.2 KiB
Python
227 lines
7.2 KiB
Python
import argparse
|
|
import itertools
|
|
import os
|
|
from typing import Sequence, TypeVar, Union
|
|
|
|
from libfb.py.log import set_simple_logging # type: ignore[import]
|
|
|
|
from torchgen import gen
|
|
from torchgen.context import native_function_manager
|
|
from torchgen.model import DispatchKey, NativeFunctionsGroup, NativeFunctionsViewGroup
|
|
from torchgen.static_runtime import config, generator
|
|
|
|
# Given a list of `grouped_native_functions` sorted by their op names, return a list of
|
|
# lists each of which groups ops that share the base name. For example, `mean` and
|
|
# `mean.dim` are grouped together by this function.
|
|
|
|
NativeGroupT = TypeVar(
|
|
"NativeGroupT",
|
|
bound=Union[NativeFunctionsGroup, NativeFunctionsViewGroup],
|
|
)
|
|
|
|
|
|
def group_functions_by_op_name(
|
|
grouped_native_functions: Sequence[NativeGroupT],
|
|
) -> Sequence[Sequence[NativeGroupT]]:
|
|
if not grouped_native_functions:
|
|
return []
|
|
groups = []
|
|
|
|
def is_supported(g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup]) -> bool:
|
|
with native_function_manager(g):
|
|
return generator.is_supported(g)
|
|
|
|
eligible_ops = (g for g in grouped_native_functions if is_supported(g))
|
|
groups = [
|
|
list(group)
|
|
for k, group in (
|
|
itertools.groupby(
|
|
eligible_ops,
|
|
key=config.func_name_base_str,
|
|
)
|
|
)
|
|
]
|
|
|
|
return groups
|
|
|
|
|
|
def clang_format(cpp_file_path: str) -> None:
|
|
import subprocess
|
|
|
|
subprocess.check_call(["clang-format", "-i", cpp_file_path])
|
|
|
|
|
|
def write_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
|
|
code = "\n".join(cpp_ops)
|
|
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
|
|
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
|
|
#include <torch/csrc/jit/runtime/static/ops.h>
|
|
|
|
#include <ATen/CPUFunctions.h>
|
|
#include <ATen/InferSize.h>
|
|
#include <ATen/NativeFunctions.h>
|
|
#include <ATen/Parallel.h>
|
|
#include <ATen/ScalarOps.h>
|
|
#include <ATen/TensorUtils.h>
|
|
#include <ATen/cpu/vec/functional.h>
|
|
#include <ATen/cpu/vec/vec.h>
|
|
#include <ATen/native/EmbeddingBag.h>
|
|
#include <ATen/native/Fill.h>
|
|
#include <ATen/native/IndexingUtils.h>
|
|
#include <ATen/native/NonSymbolicBC.h>
|
|
#include <ATen/native/Resize.h>
|
|
#include <ATen/native/SharedReduceOps.h>
|
|
#include <ATen/native/TensorAdvancedIndexing.h>
|
|
#include <ATen/native/cpu/SerialStackImpl.h>
|
|
#include <ATen/native/layer_norm.h>
|
|
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
|
|
#include <ATen/native/quantized/cpu/qembeddingbag.h>
|
|
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
|
|
#include <ATen/quantized/QTensorImpl.h>
|
|
#include <ATen/quantized/Quantizer.h>
|
|
#include <c10/core/ScalarType.h>
|
|
#include <c10/core/WrapDimMinimal.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/runtime/static/impl.h>
|
|
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
|
|
#include <torch/csrc/jit/runtime/vararg_functions.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
|
|
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
|
|
namespace torch {{
|
|
namespace jit {{
|
|
|
|
{code}
|
|
|
|
}} // namespace jit
|
|
}} // namespace torch
|
|
"""
|
|
with open(file_path, "w") as f:
|
|
f.write(generated)
|
|
clang_format(file_path)
|
|
|
|
|
|
def write_test_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
|
|
code = "\n".join(cpp_ops)
|
|
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
|
|
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
|
|
#include <gtest/gtest.h>
|
|
#include <torch/csrc/jit/runtime/static/impl.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include "test_utils.h"
|
|
|
|
using namespace caffe2;
|
|
using namespace torch;
|
|
using namespace torch::jit;
|
|
using namespace torch::jit::test;
|
|
using c10::IValue;
|
|
|
|
{code}
|
|
|
|
"""
|
|
with open(file_path, "w") as f:
|
|
f.write(generated)
|
|
clang_format(file_path)
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description="Generate ATen source files")
|
|
parser.add_argument(
|
|
"-s",
|
|
"--source-path",
|
|
help="path to source directory for ATen",
|
|
default="caffe2/aten/src/ATen",
|
|
)
|
|
parser.add_argument(
|
|
"-p",
|
|
"--generated-ops-cpp-path",
|
|
help="path to directory to generate op dispatcher .cpp file",
|
|
default="caffe2/torch/csrc/jit/runtime/static/generated_ops.cpp",
|
|
)
|
|
parser.add_argument(
|
|
"-t",
|
|
"--generated-ops-test-cpp-path",
|
|
help="path to directory to generate op dispatcher .cpp file",
|
|
default="caffe2/benchmarks/static_runtime/test_generated_ops.cc",
|
|
)
|
|
options = parser.parse_args()
|
|
native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml")
|
|
tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml")
|
|
parsed_yaml = gen.parse_native_yaml(native_yaml_path, tags_yaml_path)
|
|
native_functions, backend_indices = (
|
|
parsed_yaml.native_functions,
|
|
parsed_yaml.backend_indices,
|
|
)
|
|
|
|
op_generator = generator.GenOpDispatcher()
|
|
test_case_generator = generator.GenOpTestCase()
|
|
|
|
native_functions_groups = [
|
|
g
|
|
for g in gen.get_grouped_native_functions(native_functions)
|
|
if isinstance(g, NativeFunctionsGroup)
|
|
]
|
|
|
|
supported_functions_groups = group_functions_by_op_name(native_functions_groups)
|
|
|
|
out_variant_op_result = [
|
|
op_generator.out_variant(groups, backend_indices[DispatchKey.CPU])
|
|
for groups in supported_functions_groups
|
|
]
|
|
out_variant_test_result = [
|
|
test_case_generator.out_variant(groups) for groups in supported_functions_groups
|
|
]
|
|
|
|
native_functions_view_groups = [
|
|
g
|
|
for g in gen.get_grouped_by_view_native_functions(native_functions)
|
|
if isinstance(g, NativeFunctionsViewGroup)
|
|
]
|
|
|
|
supported_functions_view_groups = group_functions_by_op_name(
|
|
native_functions_view_groups
|
|
)
|
|
|
|
view_op_result = [
|
|
op_generator.view(groups, backend_indices[DispatchKey.CPU])
|
|
for groups in supported_functions_view_groups
|
|
]
|
|
view_test_result = [
|
|
test_case_generator.view(groups) for groups in supported_functions_view_groups
|
|
]
|
|
|
|
op_result = out_variant_op_result + ["\n\n"] + view_op_result
|
|
test_result = out_variant_test_result + ["\n\n"] + view_test_result
|
|
|
|
write_cpp(op_result, options.generated_ops_cpp_path)
|
|
write_test_cpp(test_result, options.generated_ops_test_cpp_path)
|
|
|
|
print(
|
|
"\ntotal grouped native ops: %d"
|
|
% len(gen.get_grouped_native_functions(native_functions))
|
|
)
|
|
|
|
print("grouped native ops with out variant: %d" % len(native_functions_groups))
|
|
supported_functions_num = sum(len(groups) for groups in supported_functions_groups)
|
|
print("generated functions groups with out variant: %d" % supported_functions_num)
|
|
|
|
print("\nview grouped native ops: %d" % len(native_functions_view_groups))
|
|
supported_view_functions_num = sum(
|
|
len(groups) for groups in supported_functions_view_groups
|
|
)
|
|
print("generated functions view groups: %d" % supported_view_functions_num)
|
|
|
|
print(
|
|
"\noverall generated : %d"
|
|
% (supported_functions_num + supported_view_functions_num)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
set_simple_logging(escape_newlines=False)
|
|
main()
|