Files
pytorch/torch/csrc/distributed/c10d/NCCLUtils.cpp
PyTorch MergeBot 1c4780e69a Revert "c10d/logging: add C10D_LOCK_GUARD (#134131)"
This reverts commit 4c28a0eb0ba437c1b7db559f63f8bec17bd48f69.

Reverted https://github.com/pytorch/pytorch/pull/134131 on behalf of https://github.com/ZainRizvi due to Sorry but this causes formatting errors internally which make it fail to build. See D61759282 ([comment](https://github.com/pytorch/pytorch/pull/134131#issuecomment-2310455878))
2024-08-26 15:19:27 +00:00

830 lines
26 KiB
C++

#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/control_plane/Handlers.hpp>
#include <c10/util/CallOnce.h>
#include <c10/util/env.h>
#include <algorithm>
#ifdef USE_C10D_NCCL
#include <vector>
#include <cuda_runtime.h>
#include <mutex>
#include <nlohmann/json.hpp>
namespace {
constexpr int64_t kCommInitBusyWaitMillis = 10;
} // namespace
namespace c10d {
ncclComm_t NCCLComm::getNcclComm() {
std::unique_lock<std::mutex> lock(mutex_);
if (aborted_) {
auto commFailureMsg = commFailureReason_ != std::nullopt
? c10::str(" Original reason for failure was: ", *commFailureReason_)
: "";
TORCH_CHECK_WITH(
DistBackendError,
false,
c10::str(
"NCCL communicator was aborted on rank ",
rank_,
". ",
commFailureMsg));
}
// only wait for initialization if nonblocking mode is enabled
if (!initialized_ && nccl_use_nonblocking()) {
waitUntilInitialized(nccl_nonblocking_timeout());
}
return ncclComm_;
}
void NCCLComm::waitUntilInitialized(int timeoutSecs) {
auto startTimepoint = std::chrono::steady_clock::now();
while (!initialized_) {
if (ncclComm_) {
ncclResult_t result;
ncclCommGetAsyncError(ncclComm_, &result);
if (result == ncclSuccess) {
LOG(INFO) << "Rank " << rank_ << ": NCCL communicator is initialized.";
initialized_ = true;
break;
}
}
auto currentTimepoint = std::chrono::steady_clock::now();
auto timeElapsed = std::chrono::duration_cast<std::chrono::seconds>(
currentTimepoint - startTimepoint)
.count();
if (timeElapsed > timeoutSecs) {
std::string err = "NCCL timeout in communicator initialization.";
TORCH_CHECK_WITH(DistBackendError, false, err);
}
std::this_thread::sleep_for(
std::chrono::milliseconds(kCommInitBusyWaitMillis));
}
}
#if defined(NCCL_HAS_COMM_SPLIT) && !defined(FBCODE_CAFFE2)
// last argument to split() API is not used to support
// multiple implementations
std::shared_ptr<NCCLComm> NCCLComm::split(
NCCLComm* source,
int color_id,
int rank,
ncclConfig_t& config,
std::vector<uint64_t>& ranks_ull) {
auto comm = std::make_shared<NCCLComm>();
C10D_NCCL_CHECK(
ncclCommSplit(
source->ncclComm_, color_id, rank, &(comm->ncclComm_), &config),
std::nullopt);
++source->ncclCommSplitCounter_;
comm->rank_ = rank;
comm->initialized_ = true;
return comm;
}
#endif
std::string getNcclVersion() {
static c10::once_flag ncclGetVersionFlag;
static std::string versionString;
c10::call_once(ncclGetVersionFlag, []() {
int version;
ncclResult_t status = ncclGetVersion(&version);
// can't compute the version if call did not return successfully or version
// code < 100 (corresponding to 0.1.0)
if (status != ncclSuccess || version < 100) {
versionString = "Unknown NCCL version";
} else {
// NCCL changed version coding starting 2.9
const int majorBase = version < 2900 ? 1000 : 10000;
const int minorBase = 100;
auto ncclMajor = version / majorBase;
auto ncclMinor = (version % majorBase) / minorBase;
auto ncclPatch =
version % (ncclMajor * majorBase + ncclMinor * minorBase);
versionString = std::to_string(ncclMajor) + "." +
std::to_string(ncclMinor) + "." + std::to_string(ncclPatch);
#ifdef NCCL_SUFFIX
const auto ncclSuffix = std::string(NCCL_SUFFIX);
if (ncclSuffix.length()) {
versionString += "." + ncclSuffix;
}
#endif
}
});
return versionString;
}
#ifdef USE_C10D_NCCL
size_t hashTensors(const std::vector<at::Tensor>& tensors) {
size_t hash = 0;
for (auto& tensor : tensors) {
if (tensor.numel() > 0 && tensor.storage()) {
size_t data_size = tensor.storage().nbytes();
if (data_size > 0 && tensor.storage().data_ptr()) {
auto src = static_cast<const char*>(tensor.storage().data_ptr().get());
char* dst = (char*)std::calloc(data_size, sizeof(char));
// This is needed so that we trigger a device synchronization so we can
// get the collective finished if launched on GPU and hash its output.
cudaMemcpy(dst, src, data_size, cudaMemcpyDeviceToHost);
for (size_t i = 0; i < data_size; ++i) {
// Update the hash for each byte in the tensor
hash = c10::hash_combine(
hash, c10::get_hash(((char*)dst)[i], data_size));
}
free(dst);
}
}
}
return hash;
}
#endif
bool nccl_use_nonblocking() {
static bool nccl_use_nonblocking_ =
c10::utils::check_env("TORCH_NCCL_USE_COMM_NONBLOCKING") == true;
if (nccl_use_nonblocking_) {
TORCH_WARN_ONCE("Using experimental non-blocking NCCL communicator.");
}
return nccl_use_nonblocking_;
}
int _parse_nccl_nonblocking_timeout() {
const char* val = getenv("TORCH_NCCL_NONBLOCKING_TIMEOUT");
int timeout = -1;
if (val) {
const std::string config(val);
timeout = std::stoi(config);
if (!nccl_use_nonblocking() && timeout > 0) {
TORCH_WARN(
"TORCH_NCCL_NONBLOCKING_TIMEOUT has no effect when TORCH_NCCL_USE_COMM_NONBLOCKING is false.");
timeout = -1;
}
}
return timeout;
}
int nccl_nonblocking_timeout() {
static int timeout = _parse_nccl_nonblocking_timeout();
return timeout;
}
std::string ncclGetErrorWithVersion(ncclResult_t error) {
return std::string(ncclGetErrorString(error)) + ", NCCL version " +
getNcclVersion();
}
// Provides additional detail into NCCL error codes based on when these are
// thrown in the NCCL codebase.
std::string getNcclErrorDetailStr(
ncclResult_t error,
std::optional<std::string> processGroupFailureReason /* = std::nullopt */
) {
// Prioritize failure reason provided by PG NCCL first, as it can abort
// communicators when it encounters collective timeouts, etc.
if (processGroupFailureReason != std::nullopt) {
return *processGroupFailureReason;
}
std::string interpret;
std::string err;
#ifdef ENABLE_NCCL_GET_LAST_ERROR
auto ret = ncclGetLastError(NULL);
if (ret) {
err = "\nLast error:\n" + std::string(ret);
} else {
err = "\nLast error: Unknown NCCL Error\n";
}
#endif
switch (error) {
case ncclUnhandledCudaError:
interpret = "ncclUnhandledCudaError: Call to CUDA function failed.";
break;
case ncclSystemError:
interpret =
"ncclSystemError: System call (e.g. socket, malloc) or external library call failed or device error. ";
#ifndef NCCL_REMOTE_ERROR
// Before ncclRemoteError was created, unexpected remote disconnect was
// categorized as ncclSystemError
interpret += "It can be also caused by unexpected exit of a remote peer.";
#endif
break;
case ncclInternalError:
interpret = "ncclInternalError: Internal check failed.";
break;
case ncclInvalidArgument:
interpret = "ncclInvalidArgument: Invalid value for an argument.";
break;
case ncclInvalidUsage:
interpret =
"ncclInvalidUsage: This usually reflects invalid usage of NCCL library.";
break;
#ifdef NCCL_REMOTE_ERROR
case ncclRemoteError:
interpret =
"ncclRemoteError: A call failed possibly due to a network error or a remote process exiting prematurely.";
break;
#endif
default:
interpret = "Unknown NCCL error!";
}
return interpret + err;
}
control_plane::RegisterHandler dumpHandler{
"dump_nccl_trace_pickle",
[](const control_plane::Request& req, control_plane::Response& res) {
const auto params = req.params();
size_t validParamCount = 0;
// valid params
const std::string includeCollectivesStr = "includecollectives";
const std::string includeStackTracesStr = "includestacktraces";
const std::string onlyActiveStr = "onlyactive";
std::unordered_map<std::string, bool> processedParams = {
{includeCollectivesStr, true},
{includeStackTracesStr, true},
{onlyActiveStr, false}};
for (const auto& [paramName, paramValue] : params) {
auto it = processedParams.find(paramName);
if (it != processedParams.end()) {
validParamCount++;
if (paramValue == "true") {
it->second = true;
} else if (paramValue == "false") {
it->second = false;
} else {
res.setStatus(400);
res.setContent(
"Invalid value for " + paramName +
" valid values are true or false",
"text/plain");
return;
}
}
}
if (validParamCount < params.size()) {
res.setStatus(400);
res.setContent(
"Invalid parameters - unexpected param passed in", "text/plain");
return;
}
res.setContent(
dump_nccl_trace(
processedParams[includeCollectivesStr],
processedParams[includeStackTracesStr],
processedParams[onlyActiveStr]),
"application/octet-stream");
}};
control_plane::RegisterHandler jsonDumpHandler{
"dump_nccl_trace_json",
[](const control_plane::Request& req, control_plane::Response& res) {
const auto params = req.params();
size_t validParamCount = 0;
// valid params
const std::string includeCollectivesStr = "includecollectives";
const std::string onlyActiveStr = "onlyactive";
std::unordered_map<std::string, bool> processedParams = {
{includeCollectivesStr, true}, {onlyActiveStr, false}};
for (const auto& [paramName, paramValue] : params) {
auto it = processedParams.find(paramName);
if (it != processedParams.end()) {
validParamCount++;
if (paramValue == "true") {
it->second = true;
} else if (paramValue == "false") {
it->second = false;
} else {
res.setStatus(400);
res.setContent(
"Invalid value for " + paramName +
" valid values are true or false",
"text/plain");
return;
}
}
}
if (validParamCount < params.size()) {
res.setStatus(400);
res.setContent(
"Invalid parameters - unexpected param passed in", "text/plain");
return;
}
res.setStatus(200);
res.setContent(
dump_nccl_trace_json(
processedParams[includeCollectivesStr],
processedParams[onlyActiveStr]),
"application/json");
}};
void DebugInfoWriter::write(const std::string& ncclTrace) {
// Open a file for writing. The ios::binary flag is used to write data as
// binary.
std::ofstream file(filename_, std::ios::binary);
// Check if the file was opened successfully.
if (!file.is_open()) {
LOG(ERROR) << "Error opening file for writing NCCLPG debug info: "
<< filename_;
return;
}
file.write(ncclTrace.data(), ncclTrace.size());
LOG(INFO) << "Finished writing NCCLPG debug info to " << filename_;
}
DebugInfoWriter& DebugInfoWriter::getWriter(int rank) {
if (writer_ == nullptr) {
std::string fileNamePrefix = getCvarString(
{"TORCH_NCCL_DEBUG_INFO_TEMP_FILE"}, "/tmp/nccl_trace_rank_");
// Using std::unique_ptr here to auto-delete the writer object
// when the pointer itself is destroyed.
std::unique_ptr<DebugInfoWriter> writerPtr(
new DebugInfoWriter(fileNamePrefix, rank));
DebugInfoWriter::registerWriter(std::move(writerPtr));
}
return *writer_;
}
void DebugInfoWriter::registerWriter(std::unique_ptr<DebugInfoWriter> writer) {
TORCH_CHECK_WITH(
DistBackendError,
hasWriterRegistered_.load() == false,
"debugInfoWriter already registered");
hasWriterRegistered_.store(true);
writer_ = std::move(writer);
}
std::optional<size_t> NCCLTraceBuffer::record(
size_t pg_id,
const std::tuple<std::string, std::string>& pg_name,
size_t collective_seq_id,
size_t p2p_seq_id,
size_t op_id,
std::string profiling_name,
const std::vector<at::Tensor>& inputs,
const std::vector<at::Tensor>& outputs,
Event* start,
Event* end,
std::chrono::milliseconds timeout_ms,
std::shared_ptr<ProcessGroupStatus> pg_status,
bool isP2P) {
if (!enabled_) {
return std::nullopt;
}
if (all_pg_status_.find(pg_id) == all_pg_status_.end()) {
// Current pg_status is not in FR.
all_pg_status_[pg_id] = pg_status;
}
auto traceback =
torch::CapturedTraceback::gather(true, true, capture_cpp_stack_);
std::lock_guard<std::mutex> guard(mutex_);
auto te = Entry{
id_,
pg_id,
pg_name,
collective_seq_id,
p2p_seq_id,
op_id,
std::move(profiling_name),
std::move(traceback),
std::move(start),
std::move(end),
c10::getTime(),
timeout_ms.count(),
isP2P,
std::nullopt,
std::nullopt,
std::nullopt,
{},
{},
{},
{},
{},
false};
for (const auto& input : inputs) {
c10::IntArrayRef sizes = input.sizes();
te.input_dtypes_.push_back(input.dtype().toScalarType());
te.input_dims_.push_back(sizes.size());
te.sizes_.insert(te.sizes_.end(), sizes.begin(), sizes.end());
}
for (const auto& output : outputs) {
c10::IntArrayRef sizes = output.sizes();
te.output_dtypes_.push_back(output.dtype().toScalarType());
te.output_dims_.push_back(sizes.size());
te.sizes_.insert(te.sizes_.end(), sizes.begin(), sizes.end());
}
if (entries_.size() < max_entries_) {
entries_.emplace_back(std::move(te));
} else {
entries_[next_++] = std::move(te);
if (next_ == max_entries_) {
next_ = 0;
}
}
return id_++;
}
void NCCLTraceBuffer::record_pg_ranks(
const std::tuple<std::string, std::string>& pg_name,
std::vector<uint64_t> ranks) {
if (!enabled_) {
return;
}
std::lock_guard<std::mutex> guard(mutex_);
pg_name_to_ranks_[pg_name] = ranks;
}
void NCCLTraceBuffer::update_state(Entry& r) {
if (r.start_ != nullptr) {
bool started = r.start_->query();
if (started && !r.time_discovered_started_) {
r.time_discovered_started_ = c10::getTime();
}
}
if (r.end_ != nullptr) {
bool completed = r.end_->query();
if (completed && !r.time_discovered_completed_) {
r.time_discovered_completed_ = c10::getTime();
}
}
}
std::vector<NCCLTraceBuffer::Entry> NCCLTraceBuffer::dump_entries() {
std::lock_guard<std::mutex> guard(mutex_);
std::vector<Entry> result;
result.reserve(entries_.size());
result.insert(result.end(), entries_.begin() + next_, entries_.end());
result.insert(result.end(), entries_.begin(), entries_.begin() + next_);
// query any remaining events
for (auto& r : result) {
update_state(r);
r.start_ = r.end_ = nullptr;
}
return result;
}
void NCCLTraceBuffer::retire_id(
std::optional<size_t> id,
bool compute_duration) {
if (!enabled_ || !id) {
return;
}
bool can_compute_duration = false;
Event* startEvent = nullptr;
Event* endEvent = nullptr;
std::optional<float> duration = std::nullopt;
std::unique_lock<std::mutex> guard(mutex_);
Entry* entry = &entries_.at(*id % max_entries_);
if (entry->id_ == *id) {
update_state(*entry);
if (compute_duration) {
can_compute_duration = entry->time_discovered_completed_.has_value() &&
entry->start_ && entry->end_;
startEvent = entry->start_;
endEvent = entry->end_;
}
entry->retired_ = true;
entry->start_ = entry->end_ = nullptr;
}
if (can_compute_duration) {
// Compute duration without without holding the lock, because
// cudaEventDuration() can hang, and we need to acquire the lock before we
// can dump(), which we never want to block.
guard.unlock();
duration = getDurationFromEvent(*startEvent, *endEvent);
guard.lock();
// Refresh the entry pointer, see if the entry has been overwritten
entry = &entries_.at(*id % max_entries_);
if (entry->id_ != *id) {
LOG(INFO) << "retire_id abandoned for id " << *id
<< ", event was overwritten while waiting to compute duration.";
return;
}
if (duration.has_value()) {
entry->duration_ = duration.value();
}
}
}
const c10::List<c10::IValue> NCCLTraceBuffer::getCollectiveTrace(
bool includeStacktraces,
bool onlyActive) {
auto entries = new_list();
auto result = dump_entries();
std::vector<torch::CapturedTraceback*> tracebacks;
torch::SymbolizedTracebacks stracebacks;
std::vector<c10::IValue> all_frames;
if (includeStacktraces) {
for (auto& e : result) {
tracebacks.push_back(e.traceback_.get());
}
stracebacks = torch::symbolize(tracebacks);
for (const auto& f : stracebacks.all_frames) {
auto d = new_dict();
d.insert(name_key, f.funcname);
d.insert(filename_key, f.filename);
d.insert(line_key, int64_t(f.lineno));
all_frames.emplace_back(std::move(d));
}
}
for (auto i : c10::irange(result.size())) {
auto dict = new_dict();
auto& e = result.at(i);
// Skip completed events
if (onlyActive && e.time_discovered_completed_.has_value()) {
continue;
}
if (includeStacktraces) {
auto& tb = stracebacks.tracebacks.at(i);
auto frames = new_list();
for (int64_t frame : tb) {
frames.push_back(all_frames.at(frame));
}
dict.insert(frames_key, frames);
}
dict.insert(record_id_key, int64_t(e.id_));
dict.insert(pg_id_key, int64_t(e.pg_id_));
dict.insert(pg_name_key, e.pg_name_);
dict.insert(collective_seq_id_key, int64_t(e.collective_seq_id_));
dict.insert(p2p_seq_id_key, int64_t(e.p2p_seq_id_));
dict.insert(op_id_key, int64_t(e.op_id_));
dict.insert(profiling_name_key, e.profiling_name_);
dict.insert(time_created_key, int64_t(e.time_created_));
if (e.duration_) {
dict.insert(duration_key, *e.duration_);
}
auto it = e.sizes_.begin();
auto read_sizes = [&](const c10::SmallVector<int, 4>& dims) {
auto sizes = new_list();
for (auto dim : dims) {
auto arg_sizes = new_list();
for (C10_UNUSED auto i : c10::irange(dim)) {
arg_sizes.push_back(*it++);
}
sizes.push_back(arg_sizes);
}
return sizes;
};
dict.insert(input_sizes_key, read_sizes(e.input_dims_));
std::vector<std::string> input_dtypes_strs;
input_dtypes_strs.reserve(e.input_dtypes_.size());
for (const auto& input_dtype : e.input_dtypes_) {
input_dtypes_strs.push_back(c10::toString(input_dtype));
}
dict.insert(input_dtypes_key, input_dtypes_strs);
dict.insert(output_sizes_key, read_sizes(e.output_dims_));
std::vector<std::string> output_dtypes_strs;
output_dtypes_strs.reserve(e.output_dtypes_.size());
for (const auto& output_dtype : e.output_dtypes_) {
output_dtypes_strs.push_back(c10::toString(output_dtype));
}
dict.insert(output_dtypes_key, output_dtypes_strs);
if (e.time_discovered_completed_.has_value()) {
dict.insert(state_key, completed_state);
} else if (e.time_discovered_started_.has_value()) {
dict.insert(state_key, started_state);
} else {
dict.insert(state_key, scheduled_state);
}
dict.insert(
time_discovered_started_key,
e.time_discovered_started_.has_value()
? int64_t(*e.time_discovered_started_)
: c10::IValue());
dict.insert(
time_discovered_completed_key,
e.time_discovered_completed_.has_value()
? int64_t(*e.time_discovered_completed_)
: c10::IValue());
dict.insert(retired_key, e.retired_);
dict.insert(timeout_key, e.timeout_ms_);
dict.insert(is_p2p_key, e.isP2P_);
entries.push_back(dict);
}
return entries;
}
const c10::Dict<c10::IValue, c10::IValue> NCCLTraceBuffer::getPgConfig() {
auto pg_config = new_dict();
for (const auto& [pg_name, ranks] : pg_name_to_ranks_) {
auto pg_info = new_dict();
pg_info.insert("name", std::get<0>(pg_name));
pg_info.insert("desc", std::get<1>(pg_name));
pg_info.insert("ranks", ranks_str(ranks));
pg_config.insert(std::get<0>(pg_name), pg_info);
}
return pg_config;
}
const std::map<std::string, std::map<std::string, std::string>> NCCLTraceBuffer::
getPgConfigJson() {
std::map<std::string, std::map<std::string, std::string>> result;
for (const auto& [pg_name, ranks] : pg_name_to_ranks_) {
auto pg_info = std::map<std::string, std::string>();
pg_info["name"] = std::get<0>(pg_name);
pg_info["desc"] = std::get<1>(pg_name);
pg_info["ranks"] = ranks_str(ranks);
result.emplace(std::get<0>(pg_name), pg_info);
}
return result;
}
const c10::Dict<c10::IValue, c10::IValue> NCCLTraceBuffer::getPgStatus() {
auto all_pg_status = new_dict();
for (const auto& [pg_id, status] : all_pg_status_) {
auto pg_status = new_dict();
pg_status.insert("last_enqueued_collective", status->lastEnqueuedSeq);
pg_status.insert("last_started_collective", status->lastStartedSeq);
pg_status.insert("last_completed_collective", status->lastCompletedSeq);
all_pg_status.insert(std::to_string(pg_id), pg_status);
}
return all_pg_status;
}
const std::map<std::string, std::map<std::string, std::string>> NCCLTraceBuffer::
getPgStatusJson() {
std::map<std::string, std::map<std::string, std::string>> result;
for (const auto& [pg_id, status] : all_pg_status_) {
auto pg_status = std::map<std::string, std::string>();
pg_status["last_enqueued_collective"] =
std::to_string(status->lastEnqueuedSeq);
pg_status["last_started_collective"] =
std::to_string(status->lastStartedSeq);
pg_status["last_completed_collective"] =
std::to_string(status->lastCompletedSeq);
result[std::to_string(pg_id)] = pg_status;
}
return result;
}
std::string NCCLTraceBuffer::dump_json(
const std::optional<std::unordered_map<
std::string,
std::unordered_map<std::string, std::string>>>& ncclDumpMap,
bool includeCollectives,
bool onlyActive) {
using json = nlohmann::json;
json result;
result[version_key_str] = version_val_str;
result[pg_config_key_str] = getPgConfigJson();
result[pg_status_key_str] = getPgStatusJson();
// collective trace
if (includeCollectives) {
std::list<json> entries;
for (auto& e : dump_entries()) {
json j;
if (onlyActive && e.time_discovered_completed_.has_value()) {
continue;
}
j[record_id_key_str] = int64_t(e.id_);
j[pg_id_key_str] = int64_t(e.pg_id_);
j[pg_name_key_str] = e.pg_name_;
j[collective_seq_id_key_str] = int64_t(e.collective_seq_id_);
j[p2p_seq_id_key_str] = int64_t(e.p2p_seq_id_);
j[op_id_key_str] = int64_t(e.op_id_);
j[profiling_name_key_str] = e.profiling_name_;
j[time_created_key_str] = int64_t(e.time_created_);
if (e.duration_) {
j[duration_key_str] = *e.duration_;
}
auto it = e.sizes_.begin();
auto read_sizes = [&](const c10::SmallVector<int, 4>& dims) {
auto sizes = std::list<std::list<int>>();
for (auto dim : dims) {
auto arg_sizes = std::list<int>();
for (auto i : c10::irange(dim)) {
(void)i;
arg_sizes.push_back(*it++);
}
sizes.push_back(arg_sizes);
}
return sizes;
};
j[input_sizes_key_str] = read_sizes(e.input_dims_);
std::vector<std::string> input_dtypes_strs;
input_dtypes_strs.reserve(e.input_dtypes_.size());
for (const auto& input_dtype : e.input_dtypes_) {
input_dtypes_strs.push_back(c10::toString(input_dtype));
}
j[input_dtypes_key_str] = input_dtypes_strs;
j[output_sizes_key_str] = read_sizes(e.output_dims_);
std::vector<std::string> output_dtypes_strs;
output_dtypes_strs.reserve(e.output_dtypes_.size());
for (const auto& output_dtype : e.output_dtypes_) {
output_dtypes_strs.push_back(c10::toString(output_dtype));
}
j[output_dtypes_key_str] = output_dtypes_strs;
if (e.time_discovered_completed_.has_value()) {
j[state_key_str] = completed_state_str;
} else if (e.time_discovered_started_.has_value()) {
j[state_key_str] = started_state_str;
} else {
j[state_key_str] = scheduled_state_str;
}
j[time_discovered_started_key_str] =
e.time_discovered_started_.has_value()
? int64_t(*e.time_discovered_started_)
: 0;
j[time_discovered_completed_key_str] =
e.time_discovered_completed_.has_value()
? int64_t(*e.time_discovered_completed_)
: 0;
j[retired_key_str] = e.retired_;
j[timeout_key_str] = e.timeout_ms_;
j[is_p2p_key_str] = e.isP2P_;
entries.emplace_back(j);
}
if (entries.size() > 0) {
result[entries_key_str] = entries;
}
}
if (ncclDumpMap.has_value()) {
result[nccl_comm_key_str] = ncclDumpMap.value();
}
return result.dump();
}
std::string NCCLTraceBuffer::dump(
const std::optional<std::unordered_map<
std::string,
std::unordered_map<std::string, std::string>>>& ncclDumpMap,
bool includeCollectives,
bool includeStackTraces,
bool onlyActive) {
auto result = new_dict();
// common values
result.insert(version_key, version_val);
result.insert(pg_config_key, getPgConfig());
result.insert(pg_status_key, getPgStatus());
// collective trace
if (includeCollectives) {
result.insert(
entries_key, getCollectiveTrace(includeStackTraces, onlyActive));
}
// convert ncclDumpMap into a dictionary
auto per_comm_dict = new_dict();
if (ncclDumpMap.has_value()) {
for (const auto& [ncclId, ncclDump] : ncclDumpMap.value()) {
auto inner_dict = new_dict();
for (const auto& [key, value] : ncclDump) {
inner_dict.insert(key, value);
}
per_comm_dict.insert(ncclId, inner_dict);
}
}
if (per_comm_dict.size() > 0) {
result.insert(nccl_comm_key, per_comm_dict);
}
return pickle_str(result);
}
std::unique_ptr<DebugInfoWriter> DebugInfoWriter::writer_ = nullptr;
std::atomic<bool> DebugInfoWriter::hasWriterRegistered_(false);
float getDurationFromEvent(
at::cuda::CUDAEvent& ncclStartEvent,
at::cuda::CUDAEvent& ncclEndEvent) {
TORCH_CHECK(
ncclEndEvent.query(),
"getDuration can only be called after work is succeeded.")
return ncclStartEvent.elapsed_time(ncclEndEvent);
}
} // namespace c10d
#endif // USE_C10D_NCCL