mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
* Codemod to update our codebase to 0.4 standard * Update some of the test scri[ts * remove Variable in test_clip_grad_value * fix _symbolic_override_wrapper_maker
188 lines
6.1 KiB
Python
188 lines
6.1 KiB
Python
from collections import namedtuple
|
|
from functools import update_wrapper
|
|
from numbers import Number
|
|
import math
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
# This follows semantics of numpy.finfo.
|
|
_Finfo = namedtuple('_Finfo', ['eps', 'tiny'])
|
|
_FINFO = {
|
|
torch.HalfStorage: _Finfo(eps=0.00097656, tiny=6.1035e-05),
|
|
torch.FloatStorage: _Finfo(eps=1.19209e-07, tiny=1.17549e-38),
|
|
torch.DoubleStorage: _Finfo(eps=2.22044604925e-16, tiny=2.22507385851e-308),
|
|
torch.cuda.HalfStorage: _Finfo(eps=0.00097656, tiny=6.1035e-05),
|
|
torch.cuda.FloatStorage: _Finfo(eps=1.19209e-07, tiny=1.17549e-38),
|
|
torch.cuda.DoubleStorage: _Finfo(eps=2.22044604925e-16, tiny=2.22507385851e-308),
|
|
}
|
|
|
|
|
|
def _finfo(tensor):
|
|
r"""
|
|
Return floating point info about a `Tensor`:
|
|
- `.eps` is the smallest number that can be added to 1 without being lost.
|
|
- `.tiny` is the smallest positive number greater than zero
|
|
(much smaller than `.eps`).
|
|
|
|
Args:
|
|
tensor (Tensor): tensor of floating point data.
|
|
Returns:
|
|
_Finfo: a `namedtuple` with fields `.eps` and `.tiny`.
|
|
"""
|
|
return _FINFO[tensor.storage_type()]
|
|
|
|
|
|
def expand_n(v, n):
|
|
r"""
|
|
Cleanly expand float or Tensor parameters.
|
|
"""
|
|
if isinstance(v, Number):
|
|
return torch.Tensor([v]).expand(n, 1)
|
|
else:
|
|
return v.expand(n, *v.size())
|
|
|
|
|
|
def _broadcast_shape(shapes):
|
|
r"""
|
|
Given a list of tensor sizes, returns the size of the resulting broadcasted
|
|
tensor.
|
|
|
|
Args:
|
|
shapes (list of torch.Size): list of tensor sizes
|
|
"""
|
|
shape = torch.Size()
|
|
for s in shapes:
|
|
shape = torch._C._infer_size(s, shape)
|
|
return shape
|
|
|
|
|
|
def broadcast_all(*values):
|
|
r"""
|
|
Given a list of values (possibly containing numbers), returns a list where each
|
|
value is broadcasted based on the following rules:
|
|
- `torch.Tensor` instances are broadcasted as per the `broadcasting rules
|
|
<http://pytorch.org/docs/master/notes/broadcasting.html>`_
|
|
- numbers.Number instances (scalars) are upcast to Tensors having
|
|
the same size and type as the first tensor passed to `values`. If all the
|
|
values are scalars, then they are upcasted to Tensors having size
|
|
`(1,)`.
|
|
|
|
Args:
|
|
values (list of `numbers.Number` or `torch.Tensor`)
|
|
|
|
Raises:
|
|
ValueError: if any of the values is not a `numbers.Number` or
|
|
`torch.Tensor` instance
|
|
"""
|
|
values = list(values)
|
|
scalar_idxs = [i for i in range(len(values)) if isinstance(values[i], Number)]
|
|
tensor_idxs = [i for i in range(len(values)) if isinstance(values[i], torch.Tensor)]
|
|
if len(scalar_idxs) + len(tensor_idxs) != len(values):
|
|
raise ValueError('Input arguments must all be instances of numbers.Number or torch.Tensor.')
|
|
if tensor_idxs:
|
|
broadcast_shape = _broadcast_shape([values[i].size() for i in tensor_idxs])
|
|
for idx in tensor_idxs:
|
|
values[idx] = values[idx].expand(broadcast_shape)
|
|
template = values[tensor_idxs[0]]
|
|
for idx in scalar_idxs:
|
|
values[idx] = template.new(template.size()).fill_(values[idx])
|
|
else:
|
|
for idx in scalar_idxs:
|
|
values[idx] = torch.tensor(float(values[idx]))
|
|
return values
|
|
|
|
|
|
def _sum_rightmost(value, dim):
|
|
r"""
|
|
Sum out ``dim`` many rightmost dimensions of a given tensor.
|
|
|
|
Args:
|
|
value (Tensor): A tensor of ``.dim()`` at least ``dim``.
|
|
dim (int): The number of rightmost dims to sum out.
|
|
"""
|
|
if dim == 0:
|
|
return value
|
|
return value.contiguous().view(value.shape[:-dim] + (-1,)).sum(-1)
|
|
|
|
|
|
def softmax(tensor):
|
|
r"""
|
|
Returns the result with softmax applied to :attr:`tensor` along the last
|
|
dimension.
|
|
"""
|
|
return F.softmax(tensor, -1)
|
|
|
|
|
|
def log_sum_exp(tensor, keepdim=True):
|
|
r"""
|
|
Numerically stable implementation for the `LogSumExp` operation. The
|
|
summing is done along the last dimension.
|
|
|
|
Args:
|
|
tensor (torch.Tensor)
|
|
keepdim (Boolean): Whether to retain the last dimension on summing.
|
|
"""
|
|
max_val = tensor.max(dim=-1, keepdim=True)[0]
|
|
return max_val + (tensor - max_val).exp().sum(dim=-1, keepdim=keepdim).log()
|
|
|
|
|
|
def logits_to_probs(logits, is_binary=False):
|
|
r"""
|
|
Converts a tensor of logits into probabilities. Note that for the
|
|
binary case, each value denotes log odds, whereas for the
|
|
multi-dimensional case, the values along the last dimension denote
|
|
the log probabilities (possibly unnormalized) of the events.
|
|
"""
|
|
if is_binary:
|
|
return F.sigmoid(logits)
|
|
return softmax(logits)
|
|
|
|
|
|
def clamp_probs(probs):
|
|
eps = _finfo(probs).eps
|
|
return probs.clamp(min=eps, max=1 - eps)
|
|
|
|
|
|
def probs_to_logits(probs, is_binary=False):
|
|
r"""
|
|
Converts a tensor of probabilities into logits. For the binary case,
|
|
this denotes the probability of occurrence of the event indexed by `1`.
|
|
For the multi-dimensional case, the values along the last dimension
|
|
denote the probabilities of occurrence of each of the events.
|
|
"""
|
|
ps_clamped = clamp_probs(probs)
|
|
if is_binary:
|
|
return torch.log(ps_clamped) - torch.log1p(-ps_clamped)
|
|
return torch.log(ps_clamped)
|
|
|
|
|
|
def batch_tril(bmat, diagonal=0):
|
|
"""
|
|
Given a batch of matrices, returns the lower triangular part of each matrix, with
|
|
the other entries set to 0. The argument `diagonal` has the same meaning as in
|
|
`torch.tril`.
|
|
"""
|
|
if bmat.dim() == 2:
|
|
return bmat.tril(diagonal=diagonal)
|
|
else:
|
|
return bmat * torch.tril(bmat.new(*bmat.shape[-2:]).fill_(1.0), diagonal=diagonal)
|
|
|
|
|
|
class lazy_property(object):
|
|
r"""
|
|
Used as a decorator for lazy loading of class attributes. This uses a
|
|
non-data descriptor that calls the wrapped method to compute the property on
|
|
first call; thereafter replacing the wrapped method into an instance
|
|
attribute.
|
|
"""
|
|
def __init__(self, wrapped):
|
|
self.wrapped = wrapped
|
|
update_wrapper(self, wrapped)
|
|
|
|
def __get__(self, instance, obj_type=None):
|
|
if instance is None:
|
|
return self
|
|
value = self.wrapped(instance)
|
|
setattr(instance, self.wrapped.__name__, value)
|
|
return value
|