mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/70201 Included functions: save_mobile_module -> saves a mobile::Module to flatbuffer load_mobile_module_from_file -> loads a flatbuffer into mobile::Module parse_mobile_module -> parses from bytes or deserialized flatbuffer module object Compared to previous attempts, this diff only adds flatbuffer to cmake target and leaves fbcode/xplat ones unchanged. Test Plan: unittest Reviewed By: malfet, gmagogsfm Differential Revision: D33239362 fbshipit-source-id: b9ca36b83d6af2d78cc50b9eb9e2a6fa7fce0763
1087 lines
34 KiB
C++
1087 lines
34 KiB
C++
#include <test/cpp/jit/test_utils.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <c10/core/TensorOptions.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/frontend/resolver.h>
|
|
#include <torch/csrc/jit/mobile/backport.h>
|
|
#include <torch/csrc/jit/mobile/backport_manager.h>
|
|
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/model_compatibility.h>
|
|
#include <torch/csrc/jit/mobile/module.h>
|
|
#include <torch/csrc/jit/mobile/parse_bytecode.h>
|
|
#include <torch/csrc/jit/mobile/parse_operators.h>
|
|
#include <torch/csrc/jit/mobile/runtime_compatibility.h>
|
|
#include <torch/csrc/jit/serialization/export.h>
|
|
#include <torch/csrc/jit/serialization/export_bytecode.h>
|
|
#include <torch/csrc/jit/serialization/flatbuffer_serializer.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/custom_class.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <torch/csrc/jit/serialization/import_export_functions.h>
|
|
#include <unordered_set>
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
mobile::Module parse_mobile_module(void* data, size_t) {
|
|
auto* flatbuffer_module = mobile::serialization::GetMutableModule(data);
|
|
return initialize_mobile_module(flatbuffer_module);
|
|
}
|
|
|
|
TEST(FlatbufferTest, UpsampleNearest2d) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, input: Tensor, scale:float):
|
|
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
|
|
inputs.emplace_back(at::Scalar(2.0));
|
|
auto ref = m.forward(inputs);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
res = bc.forward(inputs);
|
|
|
|
auto resd = res.toTensor();
|
|
auto refd = ref.toTensor();
|
|
ASSERT_TRUE(resd.equal(refd));
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
auto res2 = bc2.forward(inputs);
|
|
auto resd2 = res2.toTensor();
|
|
ASSERT_TRUE(resd2.equal(refd));
|
|
}
|
|
|
|
TEST(FlatbufferTest, CheckAttrAccess) {
|
|
Module m("m");
|
|
m.register_attribute("mobile_optimized", BoolType::get(), true);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
bool mobile_optimized = bc.attr("mobile_optimized", false).toBool();
|
|
|
|
AT_ASSERT(mobile_optimized);
|
|
m.setattr("mobile_optimized", false);
|
|
bc = jitModuleToMobile(m, options);
|
|
mobile_optimized = bc.attr("mobile_optimized", false).toBool();
|
|
|
|
AT_ASSERT(!mobile_optimized);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
auto mobile_optimized2 = bc2.attr("mobile_optimized", false).toBool();
|
|
AT_ASSERT(!mobile_optimized2);
|
|
}
|
|
|
|
TEST(FlatbufferTest, MethodInvocation) { // NOLINT (use =delete in gtest)
|
|
const std::vector<std::string> test_programs{
|
|
// test invoking a method with default parameter
|
|
R"(
|
|
def test_func(self, x, b : int = 4):
|
|
return self.foo + x + b
|
|
)",
|
|
// inner method call with default parameter (gets inlined)
|
|
R"(
|
|
def add_with_default_arg(self, x, b : int = 4):
|
|
return self.foo + x + b
|
|
def test_func(self, x):
|
|
return self.add_with_default_arg(x) # invoke method w/ default arg
|
|
)",
|
|
// simple method call
|
|
R"(
|
|
def test_func(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)",
|
|
};
|
|
for (const auto& test_program : test_programs) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(test_program);
|
|
|
|
const int fortyTwo = 42; // (keep linter happy)
|
|
auto minput = fortyTwo * torch::ones({});
|
|
auto ref = m.run_method("test_func", minput);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
const auto& test_func = bc.get_method("test_func");
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = test_func({minput});
|
|
}
|
|
|
|
auto resd = res.toTensor().item<float>();
|
|
auto refd = ref.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
const auto& test_func2 = bc2.get_method("test_func");
|
|
IValue res2;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res2 = test_func2({minput});
|
|
}
|
|
auto resd2 = res2.toTensor().item<float>();
|
|
AT_ASSERT(resd2 == refd);
|
|
}
|
|
}
|
|
|
|
TEST(FlatbufferTest, Conv) {
|
|
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
|
|
if (s && strcmp(s, "1") == 0)
|
|
return;
|
|
|
|
std::vector<torch::jit::IValue> inputs;
|
|
|
|
Module m("m");
|
|
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
|
|
m.register_parameter("bias", torch::ones({20}), false);
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
|
|
)");
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
|
|
inputs.push_back(torch::ones({1, 1, 28, 28}));
|
|
|
|
auto outputref = m.forward(inputs).toTensor();
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc.get_method("forward")(inputs);
|
|
}
|
|
auto output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(
|
|
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc2.get_method("forward")(inputs);
|
|
}
|
|
output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(
|
|
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
|
|
}
|
|
|
|
TEST(FlatbufferTest, Inline) {
|
|
Module m("m");
|
|
m.define(R"JIT(
|
|
def foo1(self, x):
|
|
return x + 1
|
|
|
|
def foo2(self, x):
|
|
return self.foo1(x) + 2
|
|
|
|
def foo3(self, x):
|
|
return self.foo2(x) + 3
|
|
)JIT");
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.get_method("foo3")(inputs);
|
|
AT_ASSERT(output.toTensor().item<float>() == 7.0);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
std::vector<torch::jit::IValue> inputs2({torch::ones({})});
|
|
output = bc2.get_method("foo3")(inputs2);
|
|
AT_ASSERT(output.toTensor().item<float>() == 7.0);
|
|
}
|
|
|
|
TEST(FlatbufferTest, Tuple) {
|
|
Module m("m");
|
|
m.define(R"JIT(
|
|
def foo(self, x):
|
|
return (1, 2, x + 3)
|
|
|
|
def forward(self, x):
|
|
tuple = self.foo(x)
|
|
return tuple
|
|
)JIT");
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.get_method("forward")(inputs);
|
|
AT_ASSERT(output.toTupleRef().elements()[1].toInt() == 2);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
output = bc2.get_method("forward")(inputs);
|
|
AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2);
|
|
}
|
|
|
|
TEST(FlatbufferTest, Dict) {
|
|
Module m("m");
|
|
m.define(R"JIT(
|
|
def foo(self, x):
|
|
return {"result": x + 1}
|
|
|
|
def forward(self, x):
|
|
d = self.foo(x)
|
|
return d
|
|
)JIT");
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.get_method("forward")(inputs);
|
|
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
output = bc2.get_method("forward")(inputs);
|
|
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
|
|
}
|
|
|
|
TEST(FlatbufferTest, Prim) {
|
|
Module m("m");
|
|
m.define(R"JIT(
|
|
def forward(self, x):
|
|
return int(x)
|
|
)JIT");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 3.5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
auto ref = m.run_method("forward", minput);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc.get_method("forward")(bcinputs);
|
|
}
|
|
|
|
auto resi = res.toInt();
|
|
auto refi = ref.toInt();
|
|
AT_ASSERT(resi == refi);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc2.get_method("forward")(bcinputs);
|
|
}
|
|
auto resi2 = res.toInt();
|
|
AT_ASSERT(resi2 == refi);
|
|
}
|
|
|
|
TEST(FlatbufferTest, PrimScalar) {
|
|
Module m("m");
|
|
m.define(R"JIT(
|
|
def forward(self, x):
|
|
return int(x.item())
|
|
)JIT");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 3.5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
auto ref = m.run_method("forward", minput);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc.get_method("forward")(bcinputs);
|
|
}
|
|
|
|
auto resi = res.toInt();
|
|
auto refi = ref.toInt();
|
|
AT_ASSERT(resi == refi);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc2.get_method("forward")(bcinputs);
|
|
}
|
|
auto resi2 = res.toInt();
|
|
AT_ASSERT(resi2 == refi);
|
|
}
|
|
|
|
TEST(FlatbufferTest, WrongMethodName) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
std::vector<IValue> inputs;
|
|
auto minput = 5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
bc.get_method("forward")(inputs), "is not defined");
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
bc2.get_method("forward")(inputs), "is not defined");
|
|
}
|
|
|
|
TEST(FlatbufferTest, SetState) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def __getstate__(self):
|
|
return self.foo
|
|
def __setstate__(self, a):
|
|
self.foo = a
|
|
def forward(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
|
|
std::stringstream ms;
|
|
m.save(ms);
|
|
auto loaded_m = load(ms);
|
|
auto ref = loaded_m.run_method("forward", minput);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc.get_method("forward")(bcinputs);
|
|
}
|
|
|
|
auto resd = res.toTensor().item<float>();
|
|
auto refd = ref.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 3; ++i) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto bcinputs = inputs;
|
|
res = bc2.get_method("forward")(bcinputs);
|
|
}
|
|
|
|
auto resd2 = res.toTensor().item<float>();
|
|
AT_ASSERT(resd2 == refd);
|
|
}
|
|
|
|
class TorchBindFlatbufferTestStruct : public torch::jit::CustomClassHolder {
|
|
public:
|
|
std::string get(at::Tensor t) {
|
|
std::stringstream ss;
|
|
ss << "Hello! Your tensor has ";
|
|
ss << t.numel();
|
|
ss << " elements!";
|
|
return ss.str();
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
struct ClassNamespaceValue : public SugaredValue {
|
|
explicit ClassNamespaceValue(c10::QualifiedName name)
|
|
: basename_(std::move(name)) {}
|
|
|
|
std::shared_ptr<SugaredValue> attr(
|
|
const SourceRange& loc,
|
|
GraphFunction& m,
|
|
const std::string& name) override {
|
|
const auto fullName = c10::QualifiedName(basename_, name);
|
|
|
|
// Check to see if it is a custom class.
|
|
if (auto custom_class = getCustomClass(fullName.qualifiedName())) {
|
|
return std::make_shared<ClassValue>(custom_class);
|
|
}
|
|
|
|
// If it's not a custom class, assume it's another namespace
|
|
// NOLINTNEXTLINE(performance-move-const-arg)
|
|
return std::make_shared<ClassNamespaceValue>(std::move(fullName));
|
|
}
|
|
|
|
std::string kind() const override {
|
|
return "Class Namespace";
|
|
}
|
|
|
|
private:
|
|
c10::QualifiedName basename_;
|
|
};
|
|
|
|
struct TestModuleResolver : public Resolver {
|
|
std::shared_ptr<SugaredValue> resolveValue(
|
|
const std::string& name,
|
|
GraphFunction& m,
|
|
const SourceRange& loc) override {
|
|
if (name == "torch") {
|
|
return std::make_shared<BuiltinModule>("aten");
|
|
} else if (name == "__torch__") {
|
|
return std::make_shared<ClassNamespaceValue>(c10::QualifiedName(name));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
TypePtr resolveType(const std::string& name, const SourceRange& loc)
|
|
override {
|
|
return nullptr;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
TEST(FlatbufferTest, BuiltinClass) {
|
|
script::Module m("m");
|
|
|
|
auto cls = getCustomClass(
|
|
"__torch__.torch.classes._TorchScriptTesting._FlatbufferTest");
|
|
TORCH_INTERNAL_ASSERT(cls);
|
|
c10::intrusive_ptr<torch::CustomClassHolder> obj_holder;
|
|
m.register_attribute("my_obj", cls, IValue::make_capsule(obj_holder));
|
|
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(
|
|
R"(
|
|
def __getstate__(self):
|
|
return 1
|
|
def __setstate__(self, a):
|
|
self.my_obj = __torch__.torch.classes._TorchScriptTesting._FlatbufferTest()
|
|
|
|
def forward(self, x) -> str:
|
|
return self.my_obj.get(x)
|
|
)",
|
|
std::make_shared<TestModuleResolver>());
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
std::string expected = "Hello! Your tensor has 12 elements!";
|
|
auto res =
|
|
bc2.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
|
|
const auto& str2 = res.toStringRef();
|
|
AT_ASSERT(str2 == expected);
|
|
}
|
|
|
|
TEST(FlatbufferTest, BuiltinFunction) {
|
|
script::Module m("m");
|
|
auto custom_class_obj = make_custom_class<TorchBindFlatbufferTestStruct>();
|
|
m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj);
|
|
m.define(R"(
|
|
def forward(self, x) -> str:
|
|
return self.my_obj.get(x)
|
|
)");
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
auto res =
|
|
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto str = res.toStringRef();
|
|
std::string expected = "Hello! Your tensor has 12 elements!";
|
|
AT_ASSERT(str == expected);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
res = bc2.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
str = res.toStringRef();
|
|
AT_ASSERT(str == expected);
|
|
}
|
|
|
|
TEST(FlatbufferTest, Eval) {
|
|
std::vector<torch::jit::IValue> inputs;
|
|
|
|
Module m("m");
|
|
m.define(R"(
|
|
def __init__(self, x):
|
|
self.training = True
|
|
|
|
def forward(self, input):
|
|
return torch.dropout(input, 1.0, self.training)
|
|
)");
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
|
|
inputs.push_back(torch::ones({1, 1, 28, 28}));
|
|
m.eval();
|
|
auto outputref = m.forward(inputs).toTensor();
|
|
|
|
// save m in training mode to make sure that mobile eval() will correctly
|
|
// change back to eval mode
|
|
m.train();
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
bc.eval();
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc.get_method("forward")(inputs);
|
|
}
|
|
auto output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(
|
|
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
bc2.eval();
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc2.get_method("forward")(inputs);
|
|
}
|
|
output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(
|
|
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
|
|
}
|
|
|
|
TEST(FlatbufferTest, FindWrongMethodName) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
ASSERT_TRUE(bc.find_method("forward") == c10::nullopt);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
ASSERT_TRUE(bc2.find_method("forward") == c10::nullopt);
|
|
}
|
|
|
|
TEST(FlatbufferTest, FindAndRunMethod) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add_it(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
auto ref = m.get_method("add_it")(inputs);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
auto bcinputs = inputs;
|
|
auto method = bc.find_method("add_it");
|
|
AT_ASSERT(method != c10::nullopt);
|
|
res = (*method)(std::move(bcinputs));
|
|
}
|
|
|
|
auto resd = res.toTensor().item<float>();
|
|
auto refd = ref.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
auto bcinputs = inputs;
|
|
auto method = bc2.find_method("add_it");
|
|
AT_ASSERT(method != c10::nullopt);
|
|
res = (*method)(std::move(bcinputs));
|
|
}
|
|
|
|
resd = res.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
}
|
|
|
|
TEST(FlatbufferTest, RunMethodVariadic) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add_three(self, x, y):
|
|
return self.foo + x + y
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto inputx = 5 * torch::ones({});
|
|
auto inputy = 4 * torch::ones({});
|
|
auto ref = m.run_method("add_three", inputx, inputy);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res = bc.run_method("add_three", inputx, inputy);
|
|
|
|
auto resd = res.toTensor().item<float>();
|
|
auto refd = ref.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
res = bc.run_method("add_three", inputx, inputy);
|
|
resd = res.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
}
|
|
|
|
TEST(FlatbufferTest, DuplicateSetState) {
|
|
Module m("M");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def __getstate__(self):
|
|
return self.foo + self.foo
|
|
def __setstate__(self, a):
|
|
self.foo = a
|
|
def forward(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
|
|
Module b("B");
|
|
b.register_module("M0", m);
|
|
b.register_module("M1", m);
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return self.M0.forward(x) + self.M1.forward(x)
|
|
)");
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
const auto methods = bc.get_methods();
|
|
const size_t expected_n = 3;
|
|
ASSERT_EQ(methods.size(), expected_n);
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
const auto methods2 = bc.get_methods();
|
|
ASSERT_EQ(methods2.size(), expected_n);
|
|
}
|
|
|
|
TEST(FlatbufferTest, OpNameExportFetchRootOperators) {
|
|
torch::jit::Module m("m");
|
|
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
|
|
m.register_parameter("bias", torch::ones({20}), false);
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
x1 = torch.zeros(2, 2)
|
|
x2 = torch.empty_like(torch.empty(2, 2))
|
|
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
|
|
return (x1, x2, x3)
|
|
)");
|
|
m.eval();
|
|
|
|
CompilationOptions options;
|
|
mobile::Module ptl_model = jitModuleToMobile(m, options);
|
|
std::set<std::string> operator_names =
|
|
torch::jit::mobile::_export_operator_list(ptl_model);
|
|
std::set<std::string> expected_operator_names = {
|
|
"aten::_convolution",
|
|
"aten::empty.memory_format",
|
|
"aten::empty_like",
|
|
"aten::zeros",
|
|
};
|
|
EXPECT_EQ(operator_names, expected_operator_names)
|
|
<< "Expected the root operator lists to be the same";
|
|
|
|
auto buff = save_mobile_module_to_bytes(ptl_model);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
operator_names = torch::jit::mobile::_export_operator_list(bc2);
|
|
EXPECT_EQ(operator_names, expected_operator_names)
|
|
<< "Expected the root operator lists to be the same";
|
|
}
|
|
|
|
TEST(FlatbufferTest, DefaultArgsConv) {
|
|
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
|
|
if (s && strcmp(s, "1") == 0)
|
|
return;
|
|
|
|
std::vector<torch::jit::IValue> inputs;
|
|
|
|
Module m("m");
|
|
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
|
|
m.register_parameter("bias", torch::ones({20}), false);
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1)
|
|
)");
|
|
|
|
inputs.emplace_back(torch::ones({1, 1, 28, 28}));
|
|
|
|
auto outputref = m.forward(inputs).toTensor();
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 1; ++i) {
|
|
res = bc.get_method("forward")(inputs);
|
|
}
|
|
auto output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(output.equal(outputref));
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 1; ++i) {
|
|
res = bc2.get_method("forward")(inputs);
|
|
}
|
|
output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(output.equal(outputref));
|
|
}
|
|
|
|
namespace {
|
|
void testLiteModuleCompareResultTensors(
|
|
Module& m,
|
|
const std::vector<torch::jit::IValue>& inputs,
|
|
const std::string& method_name = "forward") {
|
|
auto outputref = m.get_method(method_name)(inputs).toTensor();
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc.get_method(method_name)(inputs);
|
|
}
|
|
auto output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(output.equal(outputref));
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc2.get_method(method_name)(inputs);
|
|
}
|
|
output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(output.equal(outputref));
|
|
}
|
|
|
|
void testDefaultArgsPinv(int num_args) {
|
|
Module m("m");
|
|
if (num_args == 1) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input)
|
|
)");
|
|
} else if (num_args == 2) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input, 1e-5)
|
|
)");
|
|
} else if (num_args == 3) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input, 1e-5, True)
|
|
)");
|
|
}
|
|
|
|
std::vector<torch::jit::IValue> inputs;
|
|
const int N = 28;
|
|
auto input = torch::range(1, N * N, 1);
|
|
input[0] = 1; // a more stable matrix
|
|
input = input.view({N, N});
|
|
inputs.emplace_back(input);
|
|
testLiteModuleCompareResultTensors(m, inputs);
|
|
}
|
|
|
|
void testDefaultArgsPinvWithOutArg(int num_args) {
|
|
Module m("m");
|
|
if (num_args == 1) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input, out=input)
|
|
)");
|
|
} else if (num_args == 2) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input, 1e-5, out=input)
|
|
)");
|
|
} else if (num_args == 3) {
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_pinv(input, 1e-5, True, out=input)
|
|
)");
|
|
}
|
|
|
|
const int N = 28;
|
|
auto input = torch::range(1, N * N, 1);
|
|
input[0] = 10000; // a more stable matrix
|
|
input = input.view({N, N});
|
|
auto ref = m.run_method("forward", input);
|
|
TORCH_CHECK(!input.equal(torch::range(1, N * N, 1)));
|
|
TORCH_CHECK(input.equal(ref.toTensor()));
|
|
}
|
|
|
|
TEST(FlatbufferTest, DefaultArgsPinvWithOutArg) {
|
|
// Test with different number of specified arguments + out arg.
|
|
// Arguments not specified take default value.
|
|
for (int num_args = 1; num_args <= 3; ++num_args) {
|
|
testDefaultArgsPinvWithOutArg(num_args);
|
|
}
|
|
}
|
|
|
|
TEST(FlatbufferTest, DefaultArgsWithOutArg) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
torch.add(x, h, out=x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto input_x = 2 * torch::ones({});
|
|
auto input_h = torch::ones({});
|
|
auto ref = m.run_method("forward", input_x, input_h);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
bc.run_method("forward", input_x, input_h);
|
|
AT_ASSERT(input_x.equal(4 * torch::ones({})));
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
auto input_x2 = 2 * torch::ones({});
|
|
auto input_h2 = torch::ones({});
|
|
m.run_method("forward", input_x2, input_h2);
|
|
bc2.run_method("forward", input_x2, input_h2);
|
|
AT_ASSERT(input_x2.equal(4 * torch::ones({})));
|
|
}
|
|
} // namespace
|
|
|
|
#if !defined FB_XPLAT_BUILD
|
|
TEST(FlatbufferTest, DefaultArgsPinv) {
|
|
// Test with different number of specified arguments.
|
|
// Arguments not specified take default value.
|
|
for (int num_args = 1; num_args <= 3; ++num_args) {
|
|
testDefaultArgsPinv(num_args);
|
|
}
|
|
|
|
// bytecode with one specified argument:
|
|
// (6,
|
|
// ('__torch__.m.forward',
|
|
// (('instructions',
|
|
// (('STOREN', 1, 2),
|
|
// ('DROPR', 1, 0),
|
|
// ('MOVE', 2, 0),
|
|
// ('OP', 0, 0),
|
|
// ('RET', 0, 0))),
|
|
// ('operators', (('aten::linalg_pinv', '', 1),)),
|
|
// ('constants', (False, 1e-15)), # default constants are not
|
|
// used
|
|
// ('types', ()),
|
|
// ('register_size', 2)),
|
|
// (('arguments',
|
|
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
|
|
// None)),
|
|
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
|
|
// None)))),
|
|
// ('returns',
|
|
// ((('name', ''), ('type', 'Tensor'), ('default_value',
|
|
// None)),)))))
|
|
|
|
// bytecode with 2 specified argument:
|
|
// (6,
|
|
// ('__torch__.m.forward',
|
|
// (('instructions',
|
|
// (('STOREN', 1, 2),
|
|
// ('DROPR', 1, 0),
|
|
// ('MOVE', 2, 0),
|
|
// ('LOADC', 1, 0), # added LOADC for specified argument
|
|
// ('OP', 0, 0),
|
|
// ('RET', 0, 0))),
|
|
// ('operators', (('aten::linalg_pinv', '', 2),)),
|
|
// ('constants', (False, 1e-05)), # updated constant table
|
|
// ('types', ()),
|
|
// ('register_size', 2)),
|
|
// (('arguments',
|
|
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
|
|
// None)),
|
|
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
|
|
// None)))),
|
|
// ('returns',
|
|
// ((('name', ''), ('type', 'Tensor'), ('default_value',
|
|
// None)),)))))
|
|
|
|
// bytecode with 3 specified arguments:
|
|
// (6,
|
|
// ('__torch__.m.forward',
|
|
// (('instructions',
|
|
// (('STOREN', 1, 2),
|
|
// ('DROPR', 1, 0),
|
|
// ('MOVE', 2, 0),
|
|
// ('LOADC', 1, 0),
|
|
// ('LOADC', 0, 0),
|
|
// ('OP', 0, 0),
|
|
// ('RET', 0, 0))),
|
|
// ('operators', (('aten::linalg_pinv', '', 3),)),
|
|
// ('constants', (True, 1e-05)),
|
|
// ('types', ()),
|
|
// ('register_size', 2)),
|
|
// (('arguments',
|
|
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
|
|
// None)),
|
|
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
|
|
// None)))),
|
|
// ('returns',
|
|
// ((('name', ''), ('type', 'Tensor'), ('default_value',
|
|
// None)),)))))
|
|
}
|
|
|
|
TEST(FlatbufferTest, DefaultArgsTensorinvSpecifyDefault) {
|
|
// The second argument is specified, but the value is the same as the default
|
|
// value. It's treated as "not specified" since the value can be fetched from
|
|
// schema.
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch.linalg_tensorinv(input, 2)
|
|
)");
|
|
torch::jit::MobileCode code(m.get_method("forward").graph(), "forward");
|
|
auto arg_nums = code.op_to_num_specified_args();
|
|
ASSERT_EQ(arg_nums.size(), 1);
|
|
ASSERT_EQ(arg_nums["aten::linalg_tensorinv"], 1);
|
|
std::vector<torch::jit::IValue> inputs;
|
|
const int N = 4;
|
|
auto input = torch::rand({N, N, N, N});
|
|
inputs.emplace_back(input);
|
|
testLiteModuleCompareResultTensors(m, inputs);
|
|
}
|
|
|
|
#endif // !defined(FB_XPLAT_BUILD)
|
|
|
|
namespace {
|
|
static auto reg =
|
|
torch::class_<TorchBindFlatbufferTestStruct>(
|
|
"_TorchScriptTesting",
|
|
"_FlatbufferTest")
|
|
.def(torch::init<>())
|
|
.def("get", &TorchBindFlatbufferTestStruct::get)
|
|
.def_pickle(
|
|
// __getattr__
|
|
[](const c10::intrusive_ptr<TorchBindFlatbufferTestStruct>& self)
|
|
-> int64_t { return 0; },
|
|
// __setattr__
|
|
[](int64_t state) {
|
|
return c10::make_intrusive<TorchBindFlatbufferTestStruct>();
|
|
});
|
|
|
|
} // namespace
|
|
|
|
TEST(FlatbufferTest, OperatorCacheDifferentiatesDefaultArgs) {
|
|
// Create 3 methods:
|
|
//
|
|
// 1. forward() returns a tensor with dtype=torch.int64 (4)
|
|
// 2. forward2() returns a tensor with dtype=torch.float32 (6)
|
|
// 3. forward3() returns a tensor with dtype=torch.float32 but
|
|
// the dtype is inferred by the input tensor's dtype
|
|
//
|
|
// If caching works correctly, then the result from the full-jit
|
|
// module and the lite module will be the same. Otherwise, it
|
|
// will be different if we don't correctly ignore the cache
|
|
// entry for an operator that has a different number of
|
|
// arguments.
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self):
|
|
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=4)
|
|
return ret1.fill_(25)
|
|
)");
|
|
m.define(R"(
|
|
def forward2(self):
|
|
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=6)
|
|
return ret1.fill_(32.0)
|
|
)");
|
|
m.define(R"(
|
|
def forward3(self):
|
|
ret1 = torch.new_empty(torch.zeros(10), [10])
|
|
return ret1.fill_(12.0)
|
|
)");
|
|
|
|
std::vector<torch::jit::IValue> inputs;
|
|
testLiteModuleCompareResultTensors(m, inputs, "forward");
|
|
testLiteModuleCompareResultTensors(m, inputs, "forward2");
|
|
testLiteModuleCompareResultTensors(m, inputs, "forward3");
|
|
}
|
|
|
|
TEST(FlatbufferTest, OperatorSize1) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, input: Tensor, scale:float):
|
|
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
|
|
)");
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
const auto& func = bc.get_method("forward").function();
|
|
ASSERT_EQ(
|
|
func.get_code().operator_input_sizes_.size(),
|
|
func.get_code().operators_.size());
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
const auto& func2 = bc.get_method("forward").function();
|
|
ASSERT_EQ(
|
|
func2.get_code().operator_input_sizes_.size(),
|
|
func2.get_code().operators_.size());
|
|
}
|
|
|
|
TEST(FlatbufferTest, OperatorTest2) { // NOLINT (use =delete in gtest)
|
|
const std::vector<std::string> test_programs{
|
|
// test invoking a method with default parameter
|
|
R"(
|
|
def test_func(self, x, b : int = 4):
|
|
return self.foo + x + b
|
|
)",
|
|
// inner method call with default parameter (gets inlined)
|
|
R"(
|
|
def add_with_default_arg(self, x, b : int = 4):
|
|
return self.foo + x + b
|
|
def test_func(self, x):
|
|
return self.add_with_default_arg(x) # invoke method w/ default arg
|
|
)",
|
|
// simple method call
|
|
R"(
|
|
def test_func(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)",
|
|
};
|
|
for (const auto& test_program : test_programs) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(test_program);
|
|
|
|
CompilationOptions options;
|
|
mobile::Module bc = jitModuleToMobile(m, options);
|
|
const auto& func = bc.get_method("test_func").function();
|
|
ASSERT_EQ(
|
|
func.get_code().operator_input_sizes_.size(),
|
|
func.get_code().operators_.size());
|
|
|
|
auto buff = save_mobile_module_to_bytes(bc);
|
|
mobile::Module bc2 = parse_mobile_module(buff.data(), buff.size());
|
|
const auto& func2 = bc.get_method("test_func").function();
|
|
ASSERT_EQ(
|
|
func2.get_code().operator_input_sizes_.size(),
|
|
func2.get_code().operators_.size());
|
|
}
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|