mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
Fixes #76434 Pull Request resolved: https://github.com/pytorch/pytorch/pull/76435 Approved by: https://github.com/jbschlosser
1990 lines
82 KiB
Python
1990 lines
82 KiB
Python
from collections import OrderedDict, namedtuple
|
|
import itertools
|
|
import warnings
|
|
import weakref
|
|
import functools
|
|
|
|
import torch
|
|
from ..parameter import Parameter
|
|
import torch.utils.hooks as hooks
|
|
|
|
from torch import Tensor, device, dtype
|
|
from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict, List
|
|
from ...utils.hooks import RemovableHandle
|
|
|
|
_grad_t = Union[Tuple[Tensor, ...], Tensor]
|
|
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
|
|
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
|
|
# the type of the subclass, not the looser type of `Module`.
|
|
T = TypeVar('T', bound='Module')
|
|
|
|
class _IncompatibleKeys(namedtuple('IncompatibleKeys', ['missing_keys', 'unexpected_keys'])):
|
|
def __repr__(self):
|
|
if not self.missing_keys and not self.unexpected_keys:
|
|
return '<All keys matched successfully>'
|
|
return super(_IncompatibleKeys, self).__repr__()
|
|
|
|
__str__ = __repr__
|
|
|
|
|
|
def _addindent(s_, numSpaces):
|
|
s = s_.split('\n')
|
|
# don't do anything for single-line stuff
|
|
if len(s) == 1:
|
|
return s_
|
|
first = s.pop(0)
|
|
s = [(numSpaces * ' ') + line for line in s]
|
|
s = '\n'.join(s)
|
|
s = first + '\n' + s
|
|
return s
|
|
|
|
|
|
def _wrap_hook(hook, module):
|
|
weak_module = weakref.ref(module)
|
|
|
|
@functools.wraps(hook)
|
|
def inner(*args, **kwargs):
|
|
module = weak_module()
|
|
if module is None:
|
|
raise RuntimeError("You are trying to call hook of a dead object!")
|
|
else:
|
|
return hook(module, *args, **kwargs)
|
|
|
|
return inner
|
|
|
|
|
|
r"""This tracks hooks common to all modules that are executed before/after
|
|
calling forward and backward. This is global state used for debugging/profiling
|
|
purposes"""
|
|
_global_backward_hooks: Dict[int, Callable] = OrderedDict()
|
|
_global_is_full_backward_hook: Optional[bool] = None
|
|
_global_forward_pre_hooks: Dict[int, Callable] = OrderedDict()
|
|
_global_forward_hooks: Dict[int, Callable] = OrderedDict()
|
|
|
|
_EXTRA_STATE_KEY_SUFFIX = '_extra_state'
|
|
|
|
|
|
def register_module_forward_pre_hook(hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Registers a forward pre-hook common to all modules.
|
|
|
|
.. warning ::
|
|
|
|
This adds global state to the `nn.module` module
|
|
and it is only intended for debugging/profiling purposes.
|
|
|
|
The hook will be called every time before :func:`forward` is invoked.
|
|
It should have the following signature::
|
|
|
|
hook(module, input) -> None or modified input
|
|
|
|
The input contains only the positional arguments given to the module.
|
|
Keyword arguments won't be passed to the hooks and only to the ``forward``.
|
|
The hook can modify the input. User can either return a tuple or a
|
|
single modified value in the hook. We will wrap the value into a tuple
|
|
if a single value is returned(unless that value is already a tuple).
|
|
|
|
This hook has precedence over the specific module hooks registered with
|
|
``register_forward_pre_hook``.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(_global_forward_pre_hooks)
|
|
_global_forward_pre_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
def register_module_forward_hook(hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Registers a global forward hook for all the modules
|
|
|
|
.. warning ::
|
|
|
|
This adds global state to the `nn.module` module
|
|
and it is only intended for debugging/profiling purposes.
|
|
|
|
The hook will be called every time after :func:`forward` has computed an output.
|
|
It should have the following signature::
|
|
|
|
hook(module, input, output) -> None or modified output
|
|
|
|
The input contains only the positional arguments given to the module.
|
|
Keyword arguments won't be passed to the hooks and only to the ``forward``.
|
|
The hook can modify the output. It can modify the input inplace but
|
|
it will not have effect on forward since this is called after
|
|
:func:`forward` is called.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
|
|
This hook will be executed before specific module hooks registered with
|
|
``register_forward_hook``.
|
|
"""
|
|
handle = hooks.RemovableHandle(_global_forward_hooks)
|
|
_global_forward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_module_backward_hook(
|
|
hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
|
|
) -> RemovableHandle:
|
|
r"""Registers a backward hook common to all the modules.
|
|
|
|
This function is deprecated in favor of
|
|
:func:`torch.nn.modules.module.register_module_full_backward_hook`
|
|
and the behavior of this function will change in future versions.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
|
|
"""
|
|
global _global_is_full_backward_hook
|
|
if _global_is_full_backward_hook is True:
|
|
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a "
|
|
"global Module hook. Please use only one of them.")
|
|
|
|
_global_is_full_backward_hook = False
|
|
|
|
handle = hooks.RemovableHandle(_global_backward_hooks)
|
|
_global_backward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_module_full_backward_hook(
|
|
hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
|
|
) -> RemovableHandle:
|
|
r"""Registers a backward hook common to all the modules.
|
|
|
|
.. warning ::
|
|
This adds global state to the `nn.module` module
|
|
and it is only intended for debugging/profiling purposes.
|
|
|
|
The hook will be called every time the gradients with respect to module
|
|
inputs are computed. The hook should have the following signature::
|
|
|
|
hook(module, grad_input, grad_output) -> Tensor or None
|
|
|
|
The :attr:`grad_input` and :attr:`grad_output` are tuples. The hook should
|
|
not modify its arguments, but it can optionally return a new gradient with
|
|
respect to the input that will be used in place of :attr:`grad_input` in
|
|
subsequent computations. :attr:`grad_input` will only correspond to the inputs given
|
|
as positional arguments and all kwarg arguments will not appear in the hook. Entries
|
|
in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
|
|
arguments.
|
|
|
|
For technical reasons, when this hook is applied to a Module, its forward function will
|
|
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
|
|
of each Tensor returned by the Module's forward function.
|
|
|
|
Global hooks are called before hooks registered with `register_backward_hook`
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
|
|
"""
|
|
global _global_is_full_backward_hook
|
|
if _global_is_full_backward_hook is False:
|
|
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a "
|
|
"global Module hook. Please use only one of them.")
|
|
|
|
_global_is_full_backward_hook = True
|
|
|
|
handle = hooks.RemovableHandle(_global_backward_hooks)
|
|
_global_backward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
# Trick mypy into not applying contravariance rules to inputs by defining
|
|
# forward as a value, rather than a function. See also
|
|
# https://github.com/python/mypy/issues/8795
|
|
def _forward_unimplemented(self, *input: Any) -> None:
|
|
r"""Defines the computation performed at every call.
|
|
|
|
Should be overridden by all subclasses.
|
|
|
|
.. note::
|
|
Although the recipe for forward pass needs to be defined within
|
|
this function, one should call the :class:`Module` instance afterwards
|
|
instead of this since the former takes care of running the
|
|
registered hooks while the latter silently ignores them.
|
|
"""
|
|
raise NotImplementedError(f"Module [{type(self).__name__}] is missing the required \"forward\" function")
|
|
|
|
|
|
class Module:
|
|
r"""Base class for all neural network modules.
|
|
|
|
Your models should also subclass this class.
|
|
|
|
Modules can also contain other Modules, allowing to nest them in
|
|
a tree structure. You can assign the submodules as regular attributes::
|
|
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(1, 20, 5)
|
|
self.conv2 = nn.Conv2d(20, 20, 5)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
return F.relu(self.conv2(x))
|
|
|
|
Submodules assigned in this way will be registered, and will have their
|
|
parameters converted too when you call :meth:`to`, etc.
|
|
|
|
.. note::
|
|
As per the example above, an ``__init__()`` call to the parent class
|
|
must be made before assignment on the child.
|
|
|
|
:ivar training: Boolean represents whether this module is in training or
|
|
evaluation mode.
|
|
:vartype training: bool
|
|
"""
|
|
|
|
dump_patches: bool = False
|
|
|
|
_version: int = 1
|
|
r"""This allows better BC support for :meth:`load_state_dict`. In
|
|
:meth:`state_dict`, the version number will be saved as in the attribute
|
|
`_metadata` of the returned state dict, and thus pickled. `_metadata` is a
|
|
dictionary with keys that follow the naming convention of state dict. See
|
|
``_load_from_state_dict`` on how to use this information in loading.
|
|
|
|
If new parameters/buffers are added/removed from a module, this number shall
|
|
be bumped, and the module's `_load_from_state_dict` method can compare the
|
|
version number and do appropriate changes if the state dict is from before
|
|
the change."""
|
|
|
|
training: bool
|
|
_is_full_backward_hook: Optional[bool]
|
|
|
|
def __init__(self) -> None:
|
|
"""
|
|
Initializes internal Module state, shared by both nn.Module and ScriptModule.
|
|
"""
|
|
torch._C._log_api_usage_once("python.nn_module")
|
|
|
|
self.training = True
|
|
self._parameters: Dict[str, Optional[Parameter]] = OrderedDict()
|
|
self._buffers: Dict[str, Optional[Tensor]] = OrderedDict()
|
|
self._non_persistent_buffers_set: Set[str] = set()
|
|
self._backward_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._is_full_backward_hook = None
|
|
self._forward_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._forward_pre_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._state_dict_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._load_state_dict_pre_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._load_state_dict_post_hooks: Dict[int, Callable] = OrderedDict()
|
|
self._modules: Dict[str, Optional['Module']] = OrderedDict()
|
|
|
|
forward: Callable[..., Any] = _forward_unimplemented
|
|
|
|
def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
|
|
r"""Adds a buffer to the module.
|
|
|
|
This is typically used to register a buffer that should not to be
|
|
considered a model parameter. For example, BatchNorm's ``running_mean``
|
|
is not a parameter, but is part of the module's state. Buffers, by
|
|
default, are persistent and will be saved alongside parameters. This
|
|
behavior can be changed by setting :attr:`persistent` to ``False``. The
|
|
only difference between a persistent buffer and a non-persistent buffer
|
|
is that the latter will not be a part of this module's
|
|
:attr:`state_dict`.
|
|
|
|
Buffers can be accessed as attributes using given names.
|
|
|
|
Args:
|
|
name (string): name of the buffer. The buffer can be accessed
|
|
from this module using the given name
|
|
tensor (Tensor or None): buffer to be registered. If ``None``, then operations
|
|
that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
|
|
the buffer is **not** included in the module's :attr:`state_dict`.
|
|
persistent (bool): whether the buffer is part of this module's
|
|
:attr:`state_dict`.
|
|
|
|
Example::
|
|
|
|
>>> self.register_buffer('running_mean', torch.zeros(num_features))
|
|
|
|
"""
|
|
if persistent is False and isinstance(self, torch.jit.ScriptModule):
|
|
raise RuntimeError("ScriptModule does not support non-persistent buffers")
|
|
|
|
if '_buffers' not in self.__dict__:
|
|
raise AttributeError(
|
|
"cannot assign buffer before Module.__init__() call")
|
|
elif not isinstance(name, torch._six.string_classes):
|
|
raise TypeError("buffer name should be a string. "
|
|
"Got {}".format(torch.typename(name)))
|
|
elif '.' in name:
|
|
raise KeyError("buffer name can't contain \".\"")
|
|
elif name == '':
|
|
raise KeyError("buffer name can't be empty string \"\"")
|
|
elif hasattr(self, name) and name not in self._buffers:
|
|
raise KeyError("attribute '{}' already exists".format(name))
|
|
elif tensor is not None and not isinstance(tensor, torch.Tensor):
|
|
raise TypeError("cannot assign '{}' object to buffer '{}' "
|
|
"(torch Tensor or None required)"
|
|
.format(torch.typename(tensor), name))
|
|
else:
|
|
self._buffers[name] = tensor
|
|
if persistent:
|
|
self._non_persistent_buffers_set.discard(name)
|
|
else:
|
|
self._non_persistent_buffers_set.add(name)
|
|
|
|
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
|
|
r"""Adds a parameter to the module.
|
|
|
|
The parameter can be accessed as an attribute using given name.
|
|
|
|
Args:
|
|
name (string): name of the parameter. The parameter can be accessed
|
|
from this module using the given name
|
|
param (Parameter or None): parameter to be added to the module. If
|
|
``None``, then operations that run on parameters, such as :attr:`cuda`,
|
|
are ignored. If ``None``, the parameter is **not** included in the
|
|
module's :attr:`state_dict`.
|
|
"""
|
|
if '_parameters' not in self.__dict__:
|
|
raise AttributeError(
|
|
"cannot assign parameter before Module.__init__() call")
|
|
|
|
elif not isinstance(name, torch._six.string_classes):
|
|
raise TypeError("parameter name should be a string. "
|
|
"Got {}".format(torch.typename(name)))
|
|
elif '.' in name:
|
|
raise KeyError("parameter name can't contain \".\"")
|
|
elif name == '':
|
|
raise KeyError("parameter name can't be empty string \"\"")
|
|
elif hasattr(self, name) and name not in self._parameters:
|
|
raise KeyError("attribute '{}' already exists".format(name))
|
|
|
|
if param is None:
|
|
self._parameters[name] = None
|
|
elif not isinstance(param, Parameter):
|
|
raise TypeError("cannot assign '{}' object to parameter '{}' "
|
|
"(torch.nn.Parameter or None required)"
|
|
.format(torch.typename(param), name))
|
|
elif param.grad_fn:
|
|
raise ValueError(
|
|
"Cannot assign non-leaf Tensor to parameter '{0}'. Model "
|
|
"parameters must be created explicitly. To express '{0}' "
|
|
"as a function of another Tensor, compute the value in "
|
|
"the forward() method.".format(name))
|
|
else:
|
|
self._parameters[name] = param
|
|
|
|
def add_module(self, name: str, module: Optional['Module']) -> None:
|
|
r"""Adds a child module to the current module.
|
|
|
|
The module can be accessed as an attribute using the given name.
|
|
|
|
Args:
|
|
name (string): name of the child module. The child module can be
|
|
accessed from this module using the given name
|
|
module (Module): child module to be added to the module.
|
|
"""
|
|
if not isinstance(module, Module) and module is not None:
|
|
raise TypeError("{} is not a Module subclass".format(
|
|
torch.typename(module)))
|
|
elif not isinstance(name, torch._six.string_classes):
|
|
raise TypeError("module name should be a string. Got {}".format(
|
|
torch.typename(name)))
|
|
elif hasattr(self, name) and name not in self._modules:
|
|
raise KeyError("attribute '{}' already exists".format(name))
|
|
elif '.' in name:
|
|
raise KeyError("module name can't contain \".\", got: {}".format(name))
|
|
elif name == '':
|
|
raise KeyError("module name can't be empty string \"\"")
|
|
self._modules[name] = module
|
|
|
|
def register_module(self, name: str, module: Optional['Module']) -> None:
|
|
r"""Alias for :func:`add_module`."""
|
|
self.add_module(name, module)
|
|
|
|
def get_submodule(self, target: str) -> "Module":
|
|
"""
|
|
Returns the submodule given by ``target`` if it exists,
|
|
otherwise throws an error.
|
|
|
|
For example, let's say you have an ``nn.Module`` ``A`` that
|
|
looks like this:
|
|
|
|
.. code-block:: text
|
|
|
|
A(
|
|
(net_b): Module(
|
|
(net_c): Module(
|
|
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
|
|
)
|
|
(linear): Linear(in_features=100, out_features=200, bias=True)
|
|
)
|
|
)
|
|
|
|
(The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
|
|
submodule ``net_b``, which itself has two submodules ``net_c``
|
|
and ``linear``. ``net_c`` then has a submodule ``conv``.)
|
|
|
|
To check whether or not we have the ``linear`` submodule, we
|
|
would call ``get_submodule("net_b.linear")``. To check whether
|
|
we have the ``conv`` submodule, we would call
|
|
``get_submodule("net_b.net_c.conv")``.
|
|
|
|
The runtime of ``get_submodule`` is bounded by the degree
|
|
of module nesting in ``target``. A query against
|
|
``named_modules`` achieves the same result, but it is O(N) in
|
|
the number of transitive modules. So, for a simple check to see
|
|
if some submodule exists, ``get_submodule`` should always be
|
|
used.
|
|
|
|
Args:
|
|
target: The fully-qualified string name of the submodule
|
|
to look for. (See above example for how to specify a
|
|
fully-qualified string.)
|
|
|
|
Returns:
|
|
torch.nn.Module: The submodule referenced by ``target``
|
|
|
|
Raises:
|
|
AttributeError: If the target string references an invalid
|
|
path or resolves to something that is not an
|
|
``nn.Module``
|
|
"""
|
|
if target == "":
|
|
return self
|
|
|
|
atoms: List[str] = target.split(".")
|
|
mod: torch.nn.Module = self
|
|
|
|
for item in atoms:
|
|
|
|
if not hasattr(mod, item):
|
|
raise AttributeError(mod._get_name() + " has no "
|
|
"attribute `" + item + "`")
|
|
|
|
mod = getattr(mod, item)
|
|
|
|
if not isinstance(mod, torch.nn.Module):
|
|
raise AttributeError("`" + item + "` is not "
|
|
"an nn.Module")
|
|
|
|
return mod
|
|
|
|
def get_parameter(self, target: str) -> "Parameter":
|
|
"""
|
|
Returns the parameter given by ``target`` if it exists,
|
|
otherwise throws an error.
|
|
|
|
See the docstring for ``get_submodule`` for a more detailed
|
|
explanation of this method's functionality as well as how to
|
|
correctly specify ``target``.
|
|
|
|
Args:
|
|
target: The fully-qualified string name of the Parameter
|
|
to look for. (See ``get_submodule`` for how to specify a
|
|
fully-qualified string.)
|
|
|
|
Returns:
|
|
torch.nn.Parameter: The Parameter referenced by ``target``
|
|
|
|
Raises:
|
|
AttributeError: If the target string references an invalid
|
|
path or resolves to something that is not an
|
|
``nn.Parameter``
|
|
"""
|
|
module_path, _, param_name = target.rpartition(".")
|
|
|
|
mod: torch.nn.Module = self.get_submodule(module_path)
|
|
|
|
if not hasattr(mod, param_name):
|
|
raise AttributeError(mod._get_name() + " has no attribute `"
|
|
+ param_name + "`")
|
|
|
|
param: torch.nn.Parameter = getattr(mod, param_name)
|
|
|
|
if not isinstance(param, torch.nn.Parameter):
|
|
raise AttributeError("`" + param_name + "` is not an "
|
|
"nn.Parameter")
|
|
|
|
return param
|
|
|
|
def get_buffer(self, target: str) -> "Tensor":
|
|
"""
|
|
Returns the buffer given by ``target`` if it exists,
|
|
otherwise throws an error.
|
|
|
|
See the docstring for ``get_submodule`` for a more detailed
|
|
explanation of this method's functionality as well as how to
|
|
correctly specify ``target``.
|
|
|
|
Args:
|
|
target: The fully-qualified string name of the buffer
|
|
to look for. (See ``get_submodule`` for how to specify a
|
|
fully-qualified string.)
|
|
|
|
Returns:
|
|
torch.Tensor: The buffer referenced by ``target``
|
|
|
|
Raises:
|
|
AttributeError: If the target string references an invalid
|
|
path or resolves to something that is not a
|
|
buffer
|
|
"""
|
|
module_path, _, buffer_name = target.rpartition(".")
|
|
|
|
mod: torch.nn.Module = self.get_submodule(module_path)
|
|
|
|
if not hasattr(mod, buffer_name):
|
|
raise AttributeError(mod._get_name() + " has no attribute `"
|
|
+ buffer_name + "`")
|
|
|
|
buffer: torch.Tensor = getattr(mod, buffer_name)
|
|
|
|
if buffer_name not in mod._buffers:
|
|
raise AttributeError("`" + buffer_name + "` is not a buffer")
|
|
|
|
return buffer
|
|
|
|
def get_extra_state(self) -> Any:
|
|
"""
|
|
Returns any extra state to include in the module's state_dict.
|
|
Implement this and a corresponding :func:`set_extra_state` for your module
|
|
if you need to store extra state. This function is called when building the
|
|
module's `state_dict()`.
|
|
|
|
Note that extra state should be pickleable to ensure working serialization
|
|
of the state_dict. We only provide provide backwards compatibility guarantees
|
|
for serializing Tensors; other objects may break backwards compatibility if
|
|
their serialized pickled form changes.
|
|
|
|
Returns:
|
|
object: Any extra state to store in the module's state_dict
|
|
"""
|
|
raise RuntimeError(
|
|
"Reached a code path in Module.get_extra_state() that should never be called. "
|
|
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
|
|
"to report this bug.")
|
|
|
|
def set_extra_state(self, state: Any):
|
|
"""
|
|
This function is called from :func:`load_state_dict` to handle any extra state
|
|
found within the `state_dict`. Implement this function and a corresponding
|
|
:func:`get_extra_state` for your module if you need to store extra state within its
|
|
`state_dict`.
|
|
|
|
Args:
|
|
state (dict): Extra state from the `state_dict`
|
|
"""
|
|
raise RuntimeError(
|
|
"Reached a code path in Module.set_extra_state() that should never be called. "
|
|
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
|
|
"to report this bug.")
|
|
|
|
def _apply(self, fn):
|
|
for module in self.children():
|
|
module._apply(fn)
|
|
|
|
def compute_should_use_set_data(tensor, tensor_applied):
|
|
if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
|
|
# If the new tensor has compatible tensor type as the existing tensor,
|
|
# the current behavior is to change the tensor in-place using `.data =`,
|
|
# and the future behavior is to overwrite the existing tensor. However,
|
|
# changing the current behavior is a BC-breaking change, and we want it
|
|
# to happen in future releases. So for now we introduce the
|
|
# `torch.__future__.get_overwrite_module_params_on_conversion()`
|
|
# global flag to let the user control whether they want the future
|
|
# behavior of overwriting the existing tensor or not.
|
|
return not torch.__future__.get_overwrite_module_params_on_conversion()
|
|
else:
|
|
return False
|
|
|
|
for key, param in self._parameters.items():
|
|
if param is None:
|
|
continue
|
|
# Tensors stored in modules are graph leaves, and we don't want to
|
|
# track autograd history of `param_applied`, so we have to use
|
|
# `with torch.no_grad():`
|
|
with torch.no_grad():
|
|
param_applied = fn(param)
|
|
should_use_set_data = compute_should_use_set_data(param, param_applied)
|
|
if should_use_set_data:
|
|
param.data = param_applied
|
|
out_param = param
|
|
else:
|
|
assert isinstance(param, Parameter)
|
|
assert param.is_leaf
|
|
out_param = Parameter(param_applied, param.requires_grad)
|
|
self._parameters[key] = out_param
|
|
|
|
if param.grad is not None:
|
|
with torch.no_grad():
|
|
grad_applied = fn(param.grad)
|
|
should_use_set_data = compute_should_use_set_data(param.grad, grad_applied)
|
|
if should_use_set_data:
|
|
out_param.grad.data = grad_applied
|
|
else:
|
|
assert param.grad.is_leaf
|
|
out_param.grad = grad_applied.requires_grad_(param.grad.requires_grad)
|
|
|
|
for key, buf in self._buffers.items():
|
|
if buf is not None:
|
|
self._buffers[key] = fn(buf)
|
|
|
|
return self
|
|
|
|
def apply(self: T, fn: Callable[['Module'], None]) -> T:
|
|
r"""Applies ``fn`` recursively to every submodule (as returned by ``.children()``)
|
|
as well as self. Typical use includes initializing the parameters of a model
|
|
(see also :ref:`nn-init-doc`).
|
|
|
|
Args:
|
|
fn (:class:`Module` -> None): function to be applied to each submodule
|
|
|
|
Returns:
|
|
Module: self
|
|
|
|
Example::
|
|
|
|
>>> @torch.no_grad()
|
|
>>> def init_weights(m):
|
|
>>> print(m)
|
|
>>> if type(m) == nn.Linear:
|
|
>>> m.weight.fill_(1.0)
|
|
>>> print(m.weight)
|
|
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
|
|
>>> net.apply(init_weights)
|
|
Linear(in_features=2, out_features=2, bias=True)
|
|
Parameter containing:
|
|
tensor([[ 1., 1.],
|
|
[ 1., 1.]])
|
|
Linear(in_features=2, out_features=2, bias=True)
|
|
Parameter containing:
|
|
tensor([[ 1., 1.],
|
|
[ 1., 1.]])
|
|
Sequential(
|
|
(0): Linear(in_features=2, out_features=2, bias=True)
|
|
(1): Linear(in_features=2, out_features=2, bias=True)
|
|
)
|
|
Sequential(
|
|
(0): Linear(in_features=2, out_features=2, bias=True)
|
|
(1): Linear(in_features=2, out_features=2, bias=True)
|
|
)
|
|
"""
|
|
for module in self.children():
|
|
module.apply(fn)
|
|
fn(self)
|
|
return self
|
|
|
|
def cuda(self: T, device: Optional[Union[int, device]] = None) -> T:
|
|
r"""Moves all model parameters and buffers to the GPU.
|
|
|
|
This also makes associated parameters and buffers different objects. So
|
|
it should be called before constructing optimizer if the module will
|
|
live on GPU while being optimized.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Args:
|
|
device (int, optional): if specified, all parameters will be
|
|
copied to that device
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.cuda(device))
|
|
|
|
def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
|
|
r"""Moves all model parameters and buffers to the IPU.
|
|
|
|
This also makes associated parameters and buffers different objects. So
|
|
it should be called before constructing optimizer if the module will
|
|
live on IPU while being optimized.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Arguments:
|
|
device (int, optional): if specified, all parameters will be
|
|
copied to that device
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.ipu(device))
|
|
|
|
def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
|
|
r"""Moves all model parameters and buffers to the XPU.
|
|
|
|
This also makes associated parameters and buffers different objects. So
|
|
it should be called before constructing optimizer if the module will
|
|
live on XPU while being optimized.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Arguments:
|
|
device (int, optional): if specified, all parameters will be
|
|
copied to that device
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.xpu(device))
|
|
|
|
def cpu(self: T) -> T:
|
|
r"""Moves all model parameters and buffers to the CPU.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.cpu())
|
|
|
|
def type(self: T, dst_type: Union[dtype, str]) -> T:
|
|
r"""Casts all parameters and buffers to :attr:`dst_type`.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Args:
|
|
dst_type (type or string): the desired type
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.type(dst_type))
|
|
|
|
def float(self: T) -> T:
|
|
r"""Casts all floating point parameters and buffers to ``float`` datatype.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.float() if t.is_floating_point() else t)
|
|
|
|
def double(self: T) -> T:
|
|
r"""Casts all floating point parameters and buffers to ``double`` datatype.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.double() if t.is_floating_point() else t)
|
|
|
|
def half(self: T) -> T:
|
|
r"""Casts all floating point parameters and buffers to ``half`` datatype.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.half() if t.is_floating_point() else t)
|
|
|
|
def bfloat16(self: T) -> T:
|
|
r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)
|
|
|
|
def to_empty(self: T, *, device: Union[str, device]) -> T:
|
|
r"""Moves the parameters and buffers to the specified device without copying storage.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): The desired device of the parameters
|
|
and buffers in this module.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self._apply(lambda t: torch.empty_like(t, device=device))
|
|
|
|
@overload
|
|
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ...,
|
|
non_blocking: bool = ...) -> T:
|
|
...
|
|
|
|
@overload
|
|
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
|
|
...
|
|
|
|
@overload
|
|
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
|
|
...
|
|
|
|
def to(self, *args, **kwargs):
|
|
r"""Moves and/or casts the parameters and buffers.
|
|
|
|
This can be called as
|
|
|
|
.. function:: to(device=None, dtype=None, non_blocking=False)
|
|
:noindex:
|
|
|
|
.. function:: to(dtype, non_blocking=False)
|
|
:noindex:
|
|
|
|
.. function:: to(tensor, non_blocking=False)
|
|
:noindex:
|
|
|
|
.. function:: to(memory_format=torch.channels_last)
|
|
:noindex:
|
|
|
|
Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
|
|
floating point or complex :attr:`dtype`\ s. In addition, this method will
|
|
only cast the floating point or complex parameters and buffers to :attr:`dtype`
|
|
(if given). The integral parameters and buffers will be moved
|
|
:attr:`device`, if that is given, but with dtypes unchanged. When
|
|
:attr:`non_blocking` is set, it tries to convert/move asynchronously
|
|
with respect to the host if possible, e.g., moving CPU Tensors with
|
|
pinned memory to CUDA devices.
|
|
|
|
See below for examples.
|
|
|
|
.. note::
|
|
This method modifies the module in-place.
|
|
|
|
Args:
|
|
device (:class:`torch.device`): the desired device of the parameters
|
|
and buffers in this module
|
|
dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
|
|
the parameters and buffers in this module
|
|
tensor (torch.Tensor): Tensor whose dtype and device are the desired
|
|
dtype and device for all parameters and buffers in this module
|
|
memory_format (:class:`torch.memory_format`): the desired memory
|
|
format for 4D parameters and buffers in this module (keyword
|
|
only argument)
|
|
|
|
Returns:
|
|
Module: self
|
|
|
|
Examples::
|
|
|
|
>>> linear = nn.Linear(2, 2)
|
|
>>> linear.weight
|
|
Parameter containing:
|
|
tensor([[ 0.1913, -0.3420],
|
|
[-0.5113, -0.2325]])
|
|
>>> linear.to(torch.double)
|
|
Linear(in_features=2, out_features=2, bias=True)
|
|
>>> linear.weight
|
|
Parameter containing:
|
|
tensor([[ 0.1913, -0.3420],
|
|
[-0.5113, -0.2325]], dtype=torch.float64)
|
|
>>> gpu1 = torch.device("cuda:1")
|
|
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
|
|
Linear(in_features=2, out_features=2, bias=True)
|
|
>>> linear.weight
|
|
Parameter containing:
|
|
tensor([[ 0.1914, -0.3420],
|
|
[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
|
|
>>> cpu = torch.device("cpu")
|
|
>>> linear.to(cpu)
|
|
Linear(in_features=2, out_features=2, bias=True)
|
|
>>> linear.weight
|
|
Parameter containing:
|
|
tensor([[ 0.1914, -0.3420],
|
|
[-0.5112, -0.2324]], dtype=torch.float16)
|
|
|
|
>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
|
|
>>> linear.weight
|
|
Parameter containing:
|
|
tensor([[ 0.3741+0.j, 0.2382+0.j],
|
|
[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
|
|
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
|
|
tensor([[0.6122+0.j, 0.1150+0.j],
|
|
[0.6122+0.j, 0.1150+0.j],
|
|
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
|
|
|
|
"""
|
|
|
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
|
|
|
if dtype is not None:
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
raise TypeError('nn.Module.to only accepts floating point or complex '
|
|
'dtypes, but got desired dtype={}'.format(dtype))
|
|
if dtype.is_complex:
|
|
warnings.warn(
|
|
"Complex modules are a new feature under active development whose design may change, "
|
|
"and some modules might not work as expected when using complex tensors as parameters or buffers. "
|
|
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
|
|
"if a complex module does not work as expected.")
|
|
|
|
def convert(t):
|
|
if convert_to_format is not None and t.dim() in (4, 5):
|
|
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
|
|
non_blocking, memory_format=convert_to_format)
|
|
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
|
|
|
|
return self._apply(convert)
|
|
|
|
def register_backward_hook(
|
|
self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
|
|
) -> RemovableHandle:
|
|
r"""Registers a backward hook on the module.
|
|
|
|
This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
|
|
the behavior of this function will change in future versions.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
|
|
"""
|
|
if self._is_full_backward_hook is True:
|
|
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
|
|
"single Module. Please use only one of them.")
|
|
|
|
self._is_full_backward_hook = False
|
|
|
|
handle = hooks.RemovableHandle(self._backward_hooks)
|
|
self._backward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_full_backward_hook(
|
|
self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
|
|
) -> RemovableHandle:
|
|
r"""Registers a backward hook on the module.
|
|
|
|
The hook will be called every time the gradients with respect to module
|
|
inputs are computed. The hook should have the following signature::
|
|
|
|
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
|
|
|
|
The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
|
|
with respect to the inputs and outputs respectively. The hook should
|
|
not modify its arguments, but it can optionally return a new gradient with
|
|
respect to the input that will be used in place of :attr:`grad_input` in
|
|
subsequent computations. :attr:`grad_input` will only correspond to the inputs given
|
|
as positional arguments and all kwarg arguments are ignored. Entries
|
|
in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
|
|
arguments.
|
|
|
|
For technical reasons, when this hook is applied to a Module, its forward function will
|
|
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
|
|
of each Tensor returned by the Module's forward function.
|
|
|
|
.. warning ::
|
|
Modifying inputs or outputs inplace is not allowed when using backward hooks and
|
|
will raise an error.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
|
|
"""
|
|
if self._is_full_backward_hook is False:
|
|
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
|
|
"single Module. Please use only one of them.")
|
|
|
|
self._is_full_backward_hook = True
|
|
|
|
handle = hooks.RemovableHandle(self._backward_hooks)
|
|
self._backward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def _get_backward_hooks(self):
|
|
r"""Returns the backward hooks for use in the call function.
|
|
It returns two lists, one with the full backward hooks and one with the non-full
|
|
backward hooks.
|
|
"""
|
|
full_backward_hooks: List[Callable] = []
|
|
if (_global_is_full_backward_hook is True):
|
|
full_backward_hooks += _global_backward_hooks.values()
|
|
if (self._is_full_backward_hook is True):
|
|
full_backward_hooks += self._backward_hooks.values()
|
|
|
|
non_full_backward_hooks: List[Callable] = []
|
|
if (_global_is_full_backward_hook is False):
|
|
non_full_backward_hooks += _global_backward_hooks.values()
|
|
if (self._is_full_backward_hook is False):
|
|
non_full_backward_hooks += self._backward_hooks.values()
|
|
|
|
return full_backward_hooks, non_full_backward_hooks
|
|
|
|
def _maybe_warn_non_full_backward_hook(self, inputs, result, grad_fn):
|
|
if not isinstance(result, torch.Tensor):
|
|
if not (isinstance(result, tuple) and all([isinstance(r, torch.Tensor) for r in result])):
|
|
warnings.warn("Using non-full backward hooks on a Module that does not return a "
|
|
"single Tensor or a tuple of Tensors is deprecated and will be removed "
|
|
"in future versions. This hook will be missing some of the grad_output. "
|
|
"Please use register_full_backward_hook to get the documented behavior.")
|
|
return
|
|
else:
|
|
result = (result,)
|
|
|
|
if not isinstance(inputs, torch.Tensor):
|
|
if not (isinstance(inputs, tuple) and all([isinstance(i, torch.Tensor) for i in inputs])):
|
|
warnings.warn("Using non-full backward hooks on a Module that does not take as input a "
|
|
"single Tensor or a tuple of Tensors is deprecated and will be removed "
|
|
"in future versions. This hook will be missing some of the grad_input. "
|
|
"Please use register_full_backward_hook to get the documented behavior.")
|
|
return
|
|
else:
|
|
inputs = (inputs,)
|
|
|
|
# At this point we are sure that inputs and result are tuple of Tensors
|
|
out_grad_fn = {r.grad_fn for r in result if r.grad_fn is not None}
|
|
if len(out_grad_fn) == 0 or (len(out_grad_fn) == 1 and grad_fn not in out_grad_fn):
|
|
warnings.warn("Using a non-full backward hook when outputs are nested in python data structure "
|
|
"is deprecated and will be removed in future versions. This hook will be missing "
|
|
"some grad_output.")
|
|
elif len(out_grad_fn) > 1:
|
|
warnings.warn("Using a non-full backward hook when outputs are generated by different autograd Nodes "
|
|
"is deprecated and will be removed in future versions. This hook will be missing "
|
|
"some grad_output. Please use register_full_backward_hook to get the documented behavior.")
|
|
else:
|
|
# At this point the grad_ouput part of the hook will most likely be correct
|
|
inputs_grad_fn = {i.grad_fn for i in inputs if i.grad_fn is not None}
|
|
|
|
next_functions = {n[0] for n in grad_fn.next_functions}
|
|
|
|
if inputs_grad_fn != next_functions:
|
|
warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes "
|
|
"is deprecated and will be removed in future versions. This hook will be missing "
|
|
"some grad_input. Please use register_full_backward_hook to get the documented "
|
|
"behavior.")
|
|
|
|
def register_forward_pre_hook(self, hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Registers a forward pre-hook on the module.
|
|
|
|
The hook will be called every time before :func:`forward` is invoked.
|
|
It should have the following signature::
|
|
|
|
hook(module, input) -> None or modified input
|
|
|
|
The input contains only the positional arguments given to the module.
|
|
Keyword arguments won't be passed to the hooks and only to the ``forward``.
|
|
The hook can modify the input. User can either return a tuple or a
|
|
single modified value in the hook. We will wrap the value into a tuple
|
|
if a single value is returned(unless that value is already a tuple).
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(self._forward_pre_hooks)
|
|
self._forward_pre_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_forward_hook(self, hook: Callable[..., None]) -> RemovableHandle:
|
|
r"""Registers a forward hook on the module.
|
|
|
|
The hook will be called every time after :func:`forward` has computed an output.
|
|
It should have the following signature::
|
|
|
|
hook(module, input, output) -> None or modified output
|
|
|
|
The input contains only the positional arguments given to the module.
|
|
Keyword arguments won't be passed to the hooks and only to the ``forward``.
|
|
The hook can modify the output. It can modify the input inplace but
|
|
it will not have effect on forward since this is called after
|
|
:func:`forward` is called.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(self._forward_hooks)
|
|
self._forward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def _slow_forward(self, *input, **kwargs):
|
|
tracing_state = torch._C._get_tracing_state()
|
|
if not tracing_state or isinstance(self.forward, torch._C.ScriptMethod):
|
|
return self.forward(*input, **kwargs)
|
|
recording_scopes = torch.jit._trace._trace_module_map is not None
|
|
if recording_scopes:
|
|
# type ignore was added because at this point one knows that
|
|
# torch.jit._trace._trace_module_map is not Optional and has type Dict[Any, Any]
|
|
name = torch.jit._trace._trace_module_map[self] if self in torch.jit._trace._trace_module_map else None # type: ignore[index, operator] # noqa: B950
|
|
if name:
|
|
tracing_state.push_scope(name)
|
|
else:
|
|
recording_scopes = False
|
|
try:
|
|
result = self.forward(*input, **kwargs)
|
|
finally:
|
|
if recording_scopes:
|
|
tracing_state.pop_scope()
|
|
return result
|
|
|
|
def _call_impl(self, *input, **kwargs):
|
|
forward_call = (self._slow_forward if torch._C._get_tracing_state() else self.forward)
|
|
# If we don't have any hooks, we want to skip the rest of the logic in
|
|
# this function, and just call forward.
|
|
if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
|
|
or _global_forward_hooks or _global_forward_pre_hooks):
|
|
return forward_call(*input, **kwargs)
|
|
# Do not call functions when jit is used
|
|
full_backward_hooks, non_full_backward_hooks = [], []
|
|
if self._backward_hooks or _global_backward_hooks:
|
|
full_backward_hooks, non_full_backward_hooks = self._get_backward_hooks()
|
|
if _global_forward_pre_hooks or self._forward_pre_hooks:
|
|
for hook in (*_global_forward_pre_hooks.values(), *self._forward_pre_hooks.values()):
|
|
result = hook(self, input)
|
|
if result is not None:
|
|
if not isinstance(result, tuple):
|
|
result = (result,)
|
|
input = result
|
|
|
|
bw_hook = None
|
|
if full_backward_hooks:
|
|
bw_hook = hooks.BackwardHook(self, full_backward_hooks)
|
|
input = bw_hook.setup_input_hook(input)
|
|
|
|
result = forward_call(*input, **kwargs)
|
|
if _global_forward_hooks or self._forward_hooks:
|
|
for hook in (*_global_forward_hooks.values(), *self._forward_hooks.values()):
|
|
hook_result = hook(self, input, result)
|
|
if hook_result is not None:
|
|
result = hook_result
|
|
|
|
if bw_hook:
|
|
result = bw_hook.setup_output_hook(result)
|
|
|
|
# Handle the non-full backward hooks
|
|
if non_full_backward_hooks:
|
|
var = result
|
|
while not isinstance(var, torch.Tensor):
|
|
if isinstance(var, dict):
|
|
var = next((v for v in var.values() if isinstance(v, torch.Tensor)))
|
|
else:
|
|
var = var[0]
|
|
grad_fn = var.grad_fn
|
|
if grad_fn is not None:
|
|
for hook in non_full_backward_hooks:
|
|
wrapper = _wrap_hook(hook, self)
|
|
grad_fn.register_hook(wrapper)
|
|
self._maybe_warn_non_full_backward_hook(input, result, grad_fn)
|
|
|
|
return result
|
|
|
|
__call__ : Callable[..., Any] = _call_impl
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
# Support loading old checkpoints that don't have the following attrs:
|
|
if '_forward_pre_hooks' not in self.__dict__:
|
|
self._forward_pre_hooks = OrderedDict()
|
|
if '_state_dict_hooks' not in self.__dict__:
|
|
self._state_dict_hooks = OrderedDict()
|
|
if '_load_state_dict_pre_hooks' not in self.__dict__:
|
|
self._load_state_dict_pre_hooks = OrderedDict()
|
|
if '_load_state_dict_post_hooks' not in self.__dict__:
|
|
self._load_state_dict_post_hooks = OrderedDict()
|
|
if '_non_persistent_buffers_set' not in self.__dict__:
|
|
self._non_persistent_buffers_set = set()
|
|
if '_is_full_backward_hook' not in self.__dict__:
|
|
self._is_full_backward_hook = None
|
|
|
|
def __getattr__(self, name: str) -> Union[Tensor, 'Module']:
|
|
if '_parameters' in self.__dict__:
|
|
_parameters = self.__dict__['_parameters']
|
|
if name in _parameters:
|
|
return _parameters[name]
|
|
if '_buffers' in self.__dict__:
|
|
_buffers = self.__dict__['_buffers']
|
|
if name in _buffers:
|
|
return _buffers[name]
|
|
if '_modules' in self.__dict__:
|
|
modules = self.__dict__['_modules']
|
|
if name in modules:
|
|
return modules[name]
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(
|
|
type(self).__name__, name))
|
|
|
|
def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None:
|
|
def remove_from(*dicts_or_sets):
|
|
for d in dicts_or_sets:
|
|
if name in d:
|
|
if isinstance(d, dict):
|
|
del d[name]
|
|
else:
|
|
d.discard(name)
|
|
|
|
params = self.__dict__.get('_parameters')
|
|
if isinstance(value, Parameter):
|
|
if params is None:
|
|
raise AttributeError(
|
|
"cannot assign parameters before Module.__init__() call")
|
|
remove_from(self.__dict__, self._buffers, self._modules, self._non_persistent_buffers_set)
|
|
self.register_parameter(name, value)
|
|
elif params is not None and name in params:
|
|
if value is not None:
|
|
raise TypeError("cannot assign '{}' as parameter '{}' "
|
|
"(torch.nn.Parameter or None expected)"
|
|
.format(torch.typename(value), name))
|
|
self.register_parameter(name, value)
|
|
else:
|
|
modules = self.__dict__.get('_modules')
|
|
if isinstance(value, Module):
|
|
if modules is None:
|
|
raise AttributeError(
|
|
"cannot assign module before Module.__init__() call")
|
|
remove_from(self.__dict__, self._parameters, self._buffers, self._non_persistent_buffers_set)
|
|
modules[name] = value
|
|
elif modules is not None and name in modules:
|
|
if value is not None:
|
|
raise TypeError("cannot assign '{}' as child module '{}' "
|
|
"(torch.nn.Module or None expected)"
|
|
.format(torch.typename(value), name))
|
|
modules[name] = value
|
|
else:
|
|
buffers = self.__dict__.get('_buffers')
|
|
if buffers is not None and name in buffers:
|
|
if value is not None and not isinstance(value, torch.Tensor):
|
|
raise TypeError("cannot assign '{}' as buffer '{}' "
|
|
"(torch.Tensor or None expected)"
|
|
.format(torch.typename(value), name))
|
|
buffers[name] = value
|
|
else:
|
|
object.__setattr__(self, name, value)
|
|
|
|
def __delattr__(self, name):
|
|
if name in self._parameters:
|
|
del self._parameters[name]
|
|
elif name in self._buffers:
|
|
del self._buffers[name]
|
|
self._non_persistent_buffers_set.discard(name)
|
|
elif name in self._modules:
|
|
del self._modules[name]
|
|
else:
|
|
object.__delattr__(self, name)
|
|
|
|
def _register_state_dict_hook(self, hook):
|
|
r"""These hooks will be called with arguments: `self`, `state_dict`,
|
|
`prefix`, `local_metadata`, after the `state_dict` of `self` is set.
|
|
Note that only parameters and buffers of `self` or its children are
|
|
guaranteed to exist in `state_dict`. The hooks may modify `state_dict`
|
|
inplace or return a new one.
|
|
"""
|
|
handle = hooks.RemovableHandle(self._state_dict_hooks)
|
|
self._state_dict_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
r"""Saves module state to `destination` dictionary, containing a state
|
|
of the module, but not its descendants. This is called on every
|
|
submodule in :meth:`~torch.nn.Module.state_dict`.
|
|
|
|
In rare cases, subclasses can achieve class-specific behavior by
|
|
overriding this method with custom logic.
|
|
|
|
Args:
|
|
destination (dict): a dict where state will be stored
|
|
prefix (str): the prefix for parameters and buffers used in this
|
|
module
|
|
"""
|
|
for name, param in self._parameters.items():
|
|
if param is not None:
|
|
destination[prefix + name] = param if keep_vars else param.detach()
|
|
for name, buf in self._buffers.items():
|
|
if buf is not None and name not in self._non_persistent_buffers_set:
|
|
destination[prefix + name] = buf if keep_vars else buf.detach()
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if getattr(self.__class__, "get_extra_state", Module.get_extra_state) is not Module.get_extra_state:
|
|
destination[extra_state_key] = self.get_extra_state()
|
|
|
|
# The user can pass an optional arbitrary mappable object to `state_dict`, in which case `state_dict` returns
|
|
# back that same object. But if they pass nothing, an `OrederedDict` is created and returned.
|
|
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
|
|
|
|
@overload
|
|
def state_dict(self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...) -> T_destination:
|
|
...
|
|
|
|
@overload
|
|
def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> Dict[str, Any]:
|
|
...
|
|
|
|
# TODO: Change `*args` to `*` and remove the copprespinding warning in docs when BC allows.
|
|
# Also remove the logic for arg parsing together.
|
|
def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
|
|
r"""Returns a dictionary containing a whole state of the module.
|
|
|
|
Both parameters and persistent buffers (e.g. running averages) are
|
|
included. Keys are corresponding parameter and buffer names.
|
|
Parameters and buffers set to ``None`` are not included.
|
|
|
|
.. warning::
|
|
Currently ``state_dict()`` also accepts positional arguments for
|
|
``destination``, ``prefix`` and ``keep_vars`` in order. However,
|
|
this is being deprecated and keyword arguments will be enforced in
|
|
future releases.
|
|
|
|
.. warning::
|
|
Please avoid the use of argument ``destination`` as it is not
|
|
designed for end-users.
|
|
|
|
Args:
|
|
destination (dict, optional): If provided, the state of module will
|
|
be updated into the dict and the same object is returned.
|
|
Otherwise, an ``OrderedDict`` will be created and returned.
|
|
Default: ``None``.
|
|
prefix (str, optional): a prefix added to parameter and buffer
|
|
names to compose the keys in state_dict. Default: ``''``.
|
|
keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
|
|
returned in the state dict are detached from autograd. If it's
|
|
set to ``True``, detaching will not be performed.
|
|
Default: ``False``.
|
|
|
|
Returns:
|
|
dict:
|
|
a dictionary containing a whole state of the module
|
|
|
|
Example::
|
|
|
|
>>> module.state_dict().keys()
|
|
['bias', 'weight']
|
|
|
|
"""
|
|
|
|
# TODO: Remove `args` and the parsing logic when BC allows.
|
|
if len(args) > 0:
|
|
if destination is None:
|
|
destination = args[0]
|
|
if len(args) > 1 and prefix == '':
|
|
prefix = args[1]
|
|
if len(args) > 2 and keep_vars is False:
|
|
keep_vars = args[2]
|
|
# DeprecationWarning is ignored by default
|
|
warnings.warn(
|
|
"Positional args are being deprecated, use kwargs instead. Refer to "
|
|
"https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
|
|
" for details.")
|
|
|
|
if destination is None:
|
|
destination = OrderedDict()
|
|
destination._metadata = OrderedDict()
|
|
|
|
local_metadata = dict(version=self._version)
|
|
if hasattr(destination, "_metadata"):
|
|
destination._metadata[prefix[:-1]] = local_metadata
|
|
|
|
self._save_to_state_dict(destination, prefix, keep_vars)
|
|
for name, module in self._modules.items():
|
|
if module is not None:
|
|
module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
|
|
for hook in self._state_dict_hooks.values():
|
|
hook_result = hook(self, destination, prefix, local_metadata)
|
|
if hook_result is not None:
|
|
destination = hook_result
|
|
return destination
|
|
|
|
def _register_load_state_dict_pre_hook(self, hook, with_module=False):
|
|
r"""These hooks will be called with arguments: `state_dict`, `prefix`,
|
|
`local_metadata`, `strict`, `missing_keys`, `unexpected_keys`,
|
|
`error_msgs`, before loading `state_dict` into `self`. These arguments
|
|
are exactly the same as those of `_load_from_state_dict`.
|
|
|
|
If ``with_module`` is ``True``, then the first argument to the hook is
|
|
an instance of the module.
|
|
|
|
Arguments:
|
|
hook (Callable): Callable hook that will be invoked before
|
|
loading the state dict.
|
|
with_module (bool, optional): Whether or not to pass the module
|
|
instance to the hook as the first parameter.
|
|
"""
|
|
handle = hooks.RemovableHandle(self._load_state_dict_pre_hooks)
|
|
if with_module:
|
|
hook = _wrap_hook(hook, self)
|
|
self._load_state_dict_pre_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def register_load_state_dict_post_hook(self, hook):
|
|
r"""Registers a post hook to be run after module's ``load_state_dict``
|
|
is called.
|
|
|
|
It should have the following signature::
|
|
hook(module, incompatible_keys) -> None
|
|
|
|
The ``module`` argument is the current module that this hook is registered
|
|
on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
|
|
of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
|
|
is a ``list`` of ``str`` containing the missing keys and
|
|
``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.
|
|
|
|
The given incompatible_keys can be modified inplace if needed.
|
|
|
|
Note that the checks performed when calling :func:`load_state_dict` with
|
|
``strict=True`` are affected by modifications the hook makes to
|
|
``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
|
|
set of keys will result in an error being thrown when ``strict=True``, and
|
|
clearning out both missing and unexpected keys will avoid an error.
|
|
|
|
Returns:
|
|
:class:`torch.utils.hooks.RemovableHandle`:
|
|
a handle that can be used to remove the added hook by calling
|
|
``handle.remove()``
|
|
"""
|
|
handle = hooks.RemovableHandle(self._load_state_dict_post_hooks)
|
|
self._load_state_dict_post_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into only
|
|
this module, but not its descendants. This is called on every submodule
|
|
in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this
|
|
module in input :attr:`state_dict` is provided as :attr:`local_metadata`.
|
|
For state dicts without metadata, :attr:`local_metadata` is empty.
|
|
Subclasses can achieve class-specific backward compatible loading using
|
|
the version number at `local_metadata.get("version", None)`.
|
|
|
|
.. note::
|
|
:attr:`state_dict` is not the same object as the input
|
|
:attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So
|
|
it can be modified.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
prefix (str): the prefix for parameters and buffers used in this
|
|
module
|
|
local_metadata (dict): a dict containing the metadata for this module.
|
|
See
|
|
strict (bool): whether to strictly enforce that the keys in
|
|
:attr:`state_dict` with :attr:`prefix` match the names of
|
|
parameters and buffers in this module
|
|
missing_keys (list of str): if ``strict=True``, add missing keys to
|
|
this list
|
|
unexpected_keys (list of str): if ``strict=True``, add unexpected
|
|
keys to this list
|
|
error_msgs (list of str): error messages should be added to this
|
|
list, and will be reported together in
|
|
:meth:`~torch.nn.Module.load_state_dict`
|
|
"""
|
|
for hook in self._load_state_dict_pre_hooks.values():
|
|
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
|
|
local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
|
|
local_state = {k: v for k, v in local_name_params if v is not None}
|
|
|
|
for name, param in local_state.items():
|
|
key = prefix + name
|
|
if key in state_dict:
|
|
input_param = state_dict[key]
|
|
if not torch.overrides.is_tensor_like(input_param):
|
|
error_msgs.append('While copying the parameter named "{}", '
|
|
'expected torch.Tensor or Tensor-like object from checkpoint but '
|
|
'received {}'
|
|
.format(key, type(input_param)))
|
|
continue
|
|
|
|
# This is used to avoid copying uninitialized parameters into
|
|
# non-lazy modules, since they dont have the hook to do the checks
|
|
# in such case, it will error when accessing the .shape attribute.
|
|
is_param_lazy = torch.nn.parameter.is_lazy(param)
|
|
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
|
|
if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1:
|
|
input_param = input_param[0]
|
|
|
|
if not is_param_lazy and input_param.shape != param.shape:
|
|
# local shape should match the one in checkpoint
|
|
error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
|
|
'the shape in current model is {}.'
|
|
.format(key, input_param.shape, param.shape))
|
|
continue
|
|
try:
|
|
with torch.no_grad():
|
|
param.copy_(input_param)
|
|
except Exception as ex:
|
|
error_msgs.append('While copying the parameter named "{}", '
|
|
'whose dimensions in the model are {} and '
|
|
'whose dimensions in the checkpoint are {}, '
|
|
'an exception occurred : {}.'
|
|
.format(key, param.size(), input_param.size(), ex.args))
|
|
elif strict:
|
|
missing_keys.append(key)
|
|
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state:
|
|
if extra_state_key in state_dict:
|
|
self.set_extra_state(state_dict[extra_state_key])
|
|
elif strict:
|
|
missing_keys.append(extra_state_key)
|
|
elif strict and (extra_state_key in state_dict):
|
|
unexpected_keys.append(extra_state_key)
|
|
|
|
if strict:
|
|
for key in state_dict.keys():
|
|
if key.startswith(prefix) and key != extra_state_key:
|
|
input_name = key[len(prefix):]
|
|
input_name = input_name.split('.', 1)[0] # get the name of param/buffer/child
|
|
if input_name not in self._modules and input_name not in local_state:
|
|
unexpected_keys.append(key)
|
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any],
|
|
strict: bool = True):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into
|
|
this module and its descendants. If :attr:`strict` is ``True``, then
|
|
the keys of :attr:`state_dict` must exactly match the keys returned
|
|
by this module's :meth:`~torch.nn.Module.state_dict` function.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
strict (bool, optional): whether to strictly enforce that the keys
|
|
in :attr:`state_dict` match the keys returned by this module's
|
|
:meth:`~torch.nn.Module.state_dict` function. Default: ``True``
|
|
|
|
Returns:
|
|
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
|
|
* **missing_keys** is a list of str containing the missing keys
|
|
* **unexpected_keys** is a list of str containing the unexpected keys
|
|
|
|
Note:
|
|
If a parameter or buffer is registered as ``None`` and its corresponding key
|
|
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
|
|
``RuntimeError``.
|
|
"""
|
|
if not isinstance(state_dict, Mapping):
|
|
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict)))
|
|
|
|
missing_keys: List[str] = []
|
|
unexpected_keys: List[str] = []
|
|
error_msgs: List[str] = []
|
|
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, '_metadata', None)
|
|
state_dict = OrderedDict(state_dict)
|
|
if metadata is not None:
|
|
# mypy isn't aware that "_metadata" exists in state_dict
|
|
state_dict._metadata = metadata # type: ignore[attr-defined]
|
|
|
|
def load(module, prefix=''):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
module._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, prefix + name + '.')
|
|
|
|
# Note that the hook can modify missing_keys and unexpected_keys.
|
|
incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
|
|
for hook in module._load_state_dict_post_hooks.values():
|
|
out = hook(module, incompatible_keys)
|
|
assert out is None, (
|
|
"Hooks registered with ``register_load_state_dict_post_hook`` are not"
|
|
"expected to return new values, if incompatible_keys need to be modified,"
|
|
"it should be done inplace."
|
|
)
|
|
|
|
load(self)
|
|
del load
|
|
|
|
if strict:
|
|
if len(unexpected_keys) > 0:
|
|
error_msgs.insert(
|
|
0, 'Unexpected key(s) in state_dict: {}. '.format(
|
|
', '.join('"{}"'.format(k) for k in unexpected_keys)))
|
|
if len(missing_keys) > 0:
|
|
error_msgs.insert(
|
|
0, 'Missing key(s) in state_dict: {}. '.format(
|
|
', '.join('"{}"'.format(k) for k in missing_keys)))
|
|
|
|
if len(error_msgs) > 0:
|
|
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
|
|
self.__class__.__name__, "\n\t".join(error_msgs)))
|
|
return _IncompatibleKeys(missing_keys, unexpected_keys)
|
|
|
|
def _named_members(self, get_members_fn, prefix='', recurse=True):
|
|
r"""Helper method for yielding various names + members of modules."""
|
|
memo = set()
|
|
modules = self.named_modules(prefix=prefix) if recurse else [(prefix, self)]
|
|
for module_prefix, module in modules:
|
|
members = get_members_fn(module)
|
|
for k, v in members:
|
|
if v is None or v in memo:
|
|
continue
|
|
memo.add(v)
|
|
name = module_prefix + ('.' if module_prefix else '') + k
|
|
yield name, v
|
|
|
|
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
r"""Returns an iterator over module parameters.
|
|
|
|
This is typically passed to an optimizer.
|
|
|
|
Args:
|
|
recurse (bool): if True, then yields parameters of this module
|
|
and all submodules. Otherwise, yields only parameters that
|
|
are direct members of this module.
|
|
|
|
Yields:
|
|
Parameter: module parameter
|
|
|
|
Example::
|
|
|
|
>>> for param in model.parameters():
|
|
>>> print(type(param), param.size())
|
|
<class 'torch.Tensor'> (20L,)
|
|
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
|
|
|
|
"""
|
|
for name, param in self.named_parameters(recurse=recurse):
|
|
yield param
|
|
|
|
def named_parameters(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Parameter]]:
|
|
r"""Returns an iterator over module parameters, yielding both the
|
|
name of the parameter as well as the parameter itself.
|
|
|
|
Args:
|
|
prefix (str): prefix to prepend to all parameter names.
|
|
recurse (bool): if True, then yields parameters of this module
|
|
and all submodules. Otherwise, yields only parameters that
|
|
are direct members of this module.
|
|
|
|
Yields:
|
|
(string, Parameter): Tuple containing the name and parameter
|
|
|
|
Example::
|
|
|
|
>>> for name, param in self.named_parameters():
|
|
>>> if name in ['bias']:
|
|
>>> print(param.size())
|
|
|
|
"""
|
|
gen = self._named_members(
|
|
lambda module: module._parameters.items(),
|
|
prefix=prefix, recurse=recurse)
|
|
for elem in gen:
|
|
yield elem
|
|
|
|
def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
|
|
r"""Returns an iterator over module buffers.
|
|
|
|
Args:
|
|
recurse (bool): if True, then yields buffers of this module
|
|
and all submodules. Otherwise, yields only buffers that
|
|
are direct members of this module.
|
|
|
|
Yields:
|
|
torch.Tensor: module buffer
|
|
|
|
Example::
|
|
|
|
>>> for buf in model.buffers():
|
|
>>> print(type(buf), buf.size())
|
|
<class 'torch.Tensor'> (20L,)
|
|
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
|
|
|
|
"""
|
|
for _, buf in self.named_buffers(recurse=recurse):
|
|
yield buf
|
|
|
|
def named_buffers(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Tensor]]:
|
|
r"""Returns an iterator over module buffers, yielding both the
|
|
name of the buffer as well as the buffer itself.
|
|
|
|
Args:
|
|
prefix (str): prefix to prepend to all buffer names.
|
|
recurse (bool): if True, then yields buffers of this module
|
|
and all submodules. Otherwise, yields only buffers that
|
|
are direct members of this module.
|
|
|
|
Yields:
|
|
(string, torch.Tensor): Tuple containing the name and buffer
|
|
|
|
Example::
|
|
|
|
>>> for name, buf in self.named_buffers():
|
|
>>> if name in ['running_var']:
|
|
>>> print(buf.size())
|
|
|
|
"""
|
|
gen = self._named_members(
|
|
lambda module: module._buffers.items(),
|
|
prefix=prefix, recurse=recurse)
|
|
for elem in gen:
|
|
yield elem
|
|
|
|
def children(self) -> Iterator['Module']:
|
|
r"""Returns an iterator over immediate children modules.
|
|
|
|
Yields:
|
|
Module: a child module
|
|
"""
|
|
for name, module in self.named_children():
|
|
yield module
|
|
|
|
def named_children(self) -> Iterator[Tuple[str, 'Module']]:
|
|
r"""Returns an iterator over immediate children modules, yielding both
|
|
the name of the module as well as the module itself.
|
|
|
|
Yields:
|
|
(string, Module): Tuple containing a name and child module
|
|
|
|
Example::
|
|
|
|
>>> for name, module in model.named_children():
|
|
>>> if name in ['conv4', 'conv5']:
|
|
>>> print(module)
|
|
|
|
"""
|
|
memo = set()
|
|
for name, module in self._modules.items():
|
|
if module is not None and module not in memo:
|
|
memo.add(module)
|
|
yield name, module
|
|
|
|
def modules(self) -> Iterator['Module']:
|
|
r"""Returns an iterator over all modules in the network.
|
|
|
|
Yields:
|
|
Module: a module in the network
|
|
|
|
Note:
|
|
Duplicate modules are returned only once. In the following
|
|
example, ``l`` will be returned only once.
|
|
|
|
Example::
|
|
|
|
>>> l = nn.Linear(2, 2)
|
|
>>> net = nn.Sequential(l, l)
|
|
>>> for idx, m in enumerate(net.modules()):
|
|
print(idx, '->', m)
|
|
|
|
0 -> Sequential(
|
|
(0): Linear(in_features=2, out_features=2, bias=True)
|
|
(1): Linear(in_features=2, out_features=2, bias=True)
|
|
)
|
|
1 -> Linear(in_features=2, out_features=2, bias=True)
|
|
|
|
"""
|
|
for _, module in self.named_modules():
|
|
yield module
|
|
|
|
def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = '', remove_duplicate: bool = True):
|
|
r"""Returns an iterator over all modules in the network, yielding
|
|
both the name of the module as well as the module itself.
|
|
|
|
Args:
|
|
memo: a memo to store the set of modules already added to the result
|
|
prefix: a prefix that will be added to the name of the module
|
|
remove_duplicate: whether to remove the duplicated module instances in the result
|
|
or not
|
|
|
|
Yields:
|
|
(string, Module): Tuple of name and module
|
|
|
|
Note:
|
|
Duplicate modules are returned only once. In the following
|
|
example, ``l`` will be returned only once.
|
|
|
|
Example::
|
|
|
|
>>> l = nn.Linear(2, 2)
|
|
>>> net = nn.Sequential(l, l)
|
|
>>> for idx, m in enumerate(net.named_modules()):
|
|
print(idx, '->', m)
|
|
|
|
0 -> ('', Sequential(
|
|
(0): Linear(in_features=2, out_features=2, bias=True)
|
|
(1): Linear(in_features=2, out_features=2, bias=True)
|
|
))
|
|
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
|
|
|
|
"""
|
|
|
|
if memo is None:
|
|
memo = set()
|
|
if self not in memo:
|
|
if remove_duplicate:
|
|
memo.add(self)
|
|
yield prefix, self
|
|
for name, module in self._modules.items():
|
|
if module is None:
|
|
continue
|
|
submodule_prefix = prefix + ('.' if prefix else '') + name
|
|
for m in module.named_modules(memo, submodule_prefix, remove_duplicate):
|
|
yield m
|
|
|
|
def train(self: T, mode: bool = True) -> T:
|
|
r"""Sets the module in training mode.
|
|
|
|
This has any effect only on certain modules. See documentations of
|
|
particular modules for details of their behaviors in training/evaluation
|
|
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
|
|
etc.
|
|
|
|
Args:
|
|
mode (bool): whether to set training mode (``True``) or evaluation
|
|
mode (``False``). Default: ``True``.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
if not isinstance(mode, bool):
|
|
raise ValueError("training mode is expected to be boolean")
|
|
self.training = mode
|
|
for module in self.children():
|
|
module.train(mode)
|
|
return self
|
|
|
|
def eval(self: T) -> T:
|
|
r"""Sets the module in evaluation mode.
|
|
|
|
This has any effect only on certain modules. See documentations of
|
|
particular modules for details of their behaviors in training/evaluation
|
|
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
|
|
etc.
|
|
|
|
This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.
|
|
|
|
See :ref:`locally-disable-grad-doc` for a comparison between
|
|
`.eval()` and several similar mechanisms that may be confused with it.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
return self.train(False)
|
|
|
|
def requires_grad_(self: T, requires_grad: bool = True) -> T:
|
|
r"""Change if autograd should record operations on parameters in this
|
|
module.
|
|
|
|
This method sets the parameters' :attr:`requires_grad` attributes
|
|
in-place.
|
|
|
|
This method is helpful for freezing part of the module for finetuning
|
|
or training parts of a model individually (e.g., GAN training).
|
|
|
|
See :ref:`locally-disable-grad-doc` for a comparison between
|
|
`.requires_grad_()` and several similar mechanisms that may be confused with it.
|
|
|
|
Args:
|
|
requires_grad (bool): whether autograd should record operations on
|
|
parameters in this module. Default: ``True``.
|
|
|
|
Returns:
|
|
Module: self
|
|
"""
|
|
for p in self.parameters():
|
|
p.requires_grad_(requires_grad)
|
|
return self
|
|
|
|
def zero_grad(self, set_to_none: bool = False) -> None:
|
|
r"""Sets gradients of all model parameters to zero. See similar function
|
|
under :class:`torch.optim.Optimizer` for more context.
|
|
|
|
Args:
|
|
set_to_none (bool): instead of setting to zero, set the grads to None.
|
|
See :meth:`torch.optim.Optimizer.zero_grad` for details.
|
|
"""
|
|
if getattr(self, '_is_replica', False):
|
|
warnings.warn(
|
|
"Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
|
|
"The parameters are copied (in a differentiable manner) from the original module. "
|
|
"This means they are not leaf nodes in autograd and so don't accumulate gradients. "
|
|
"If you need gradients in your forward method, consider using autograd.grad instead.")
|
|
|
|
for p in self.parameters():
|
|
if p.grad is not None:
|
|
if set_to_none:
|
|
p.grad = None
|
|
else:
|
|
if p.grad.grad_fn is not None:
|
|
p.grad.detach_()
|
|
else:
|
|
p.grad.requires_grad_(False)
|
|
p.grad.zero_()
|
|
|
|
def share_memory(self: T) -> T:
|
|
r"""See :meth:`torch.Tensor.share_memory_`"""
|
|
return self._apply(lambda t: t.share_memory_())
|
|
|
|
def _get_name(self):
|
|
return self.__class__.__name__
|
|
|
|
def extra_repr(self) -> str:
|
|
r"""Set the extra representation of the module
|
|
|
|
To print customized extra information, you should re-implement
|
|
this method in your own modules. Both single-line and multi-line
|
|
strings are acceptable.
|
|
"""
|
|
return ''
|
|
|
|
def __repr__(self):
|
|
# We treat the extra repr like the sub-module, one item per line
|
|
extra_lines = []
|
|
extra_repr = self.extra_repr()
|
|
# empty string will be split into list ['']
|
|
if extra_repr:
|
|
extra_lines = extra_repr.split('\n')
|
|
child_lines = []
|
|
for key, module in self._modules.items():
|
|
mod_str = repr(module)
|
|
mod_str = _addindent(mod_str, 2)
|
|
child_lines.append('(' + key + '): ' + mod_str)
|
|
lines = extra_lines + child_lines
|
|
|
|
main_str = self._get_name() + '('
|
|
if lines:
|
|
# simple one-liner info, which most builtin Modules will use
|
|
if len(extra_lines) == 1 and not child_lines:
|
|
main_str += extra_lines[0]
|
|
else:
|
|
main_str += '\n ' + '\n '.join(lines) + '\n'
|
|
|
|
main_str += ')'
|
|
return main_str
|
|
|
|
def __dir__(self):
|
|
module_attrs = dir(self.__class__)
|
|
attrs = list(self.__dict__.keys())
|
|
parameters = list(self._parameters.keys())
|
|
modules = list(self._modules.keys())
|
|
buffers = list(self._buffers.keys())
|
|
keys = module_attrs + attrs + parameters + modules + buffers
|
|
|
|
# Eliminate attrs that are not legal Python variable names
|
|
keys = [key for key in keys if not key[0].isdigit()]
|
|
|
|
return sorted(keys)
|
|
|
|
def _replicate_for_data_parallel(self):
|
|
replica = self.__new__(type(self))
|
|
replica.__dict__ = self.__dict__.copy()
|
|
|
|
# replicas do not have parameters themselves, the replicas reference the original
|
|
# module.
|
|
replica._parameters = OrderedDict()
|
|
replica._buffers = replica._buffers.copy()
|
|
replica._modules = replica._modules.copy()
|
|
replica._is_replica = True # type: ignore[assignment]
|
|
|
|
return replica
|