mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68693 Generation of python bindings for native functions is split over 8 different files. One for each namespace, with the torch namespace split into 3 shards, and methods in their own file as well. This change ensures that editing any single (non-method) operator only causes one of these files to be rebuilt. Test Plan: Imported from OSS Reviewed By: jbschlosser Differential Revision: D32596270 Pulled By: albanD fbshipit-source-id: 0570ec69e7476b8f1bc21138ba18fe8f95ebbe3f (cherry picked from commit ba0fc71a3a6835e49b332a8be52bf798fa2726b3)
119 lines
3.0 KiB
C++
119 lines
3.0 KiB
C++
#include <torch/csrc/distributed/rpc/message.h>
|
|
#include <torch/custom_class.h>
|
|
|
|
namespace torch {
|
|
namespace distributed {
|
|
namespace rpc {
|
|
|
|
Message::Message() = default;
|
|
|
|
Message::Message(
|
|
std::vector<char>&& payload,
|
|
std::vector<torch::Tensor>&& tensors,
|
|
MessageType type)
|
|
: payload_(std::move(payload)), tensors_(std::move(tensors)), type_(type) {}
|
|
|
|
Message::Message(
|
|
std::vector<char>&& payload,
|
|
std::vector<torch::Tensor>&& tensors,
|
|
MessageType type,
|
|
int64_t id)
|
|
: payload_(std::move(payload)),
|
|
tensors_(std::move(tensors)),
|
|
type_(type),
|
|
id_(id) {}
|
|
|
|
std::vector<char>&& Message::movePayload() && {
|
|
return std::move(payload_);
|
|
}
|
|
|
|
std::vector<char>& Message::payload() {
|
|
return payload_;
|
|
}
|
|
|
|
const std::vector<char>& Message::payload() const {
|
|
return payload_;
|
|
}
|
|
|
|
std::vector<torch::Tensor>&& Message::moveTensors() && {
|
|
return std::move(tensors_);
|
|
}
|
|
|
|
std::vector<torch::Tensor>& Message::tensors() {
|
|
return tensors_;
|
|
}
|
|
|
|
const std::vector<torch::Tensor>& Message::tensors() const {
|
|
return tensors_;
|
|
}
|
|
|
|
MessageType Message::type() const {
|
|
return type_;
|
|
}
|
|
|
|
bool Message::isRequest() const {
|
|
return MessageTypeFlags::REQUEST_TYPE & type_;
|
|
}
|
|
|
|
bool Message::isResponse() const {
|
|
return MessageTypeFlags::RESPONSE_TYPE & type_;
|
|
}
|
|
|
|
int64_t Message::id() const {
|
|
return id_;
|
|
}
|
|
|
|
void Message::setId(int64_t id) {
|
|
id_ = id;
|
|
}
|
|
|
|
std::vector<c10::weak_intrusive_ptr<c10::StorageImpl>> Message::getStorages()
|
|
const {
|
|
// Sparse tensors do not have storage. Instead, a sparse tensor
|
|
// contains two tensors indices and values, and both contain storage.
|
|
std::vector<c10::weak_intrusive_ptr<c10::StorageImpl>> storages;
|
|
storages.reserve(2 * tensors_.size());
|
|
for (const auto& tensor : tensors_) {
|
|
if (tensor.is_sparse()) {
|
|
storages.emplace_back(tensor._indices().storage().getWeakStorageImpl());
|
|
storages.emplace_back(tensor._values().storage().getWeakStorageImpl());
|
|
} else {
|
|
storages.emplace_back(tensor.storage().getWeakStorageImpl());
|
|
}
|
|
}
|
|
return storages;
|
|
}
|
|
|
|
c10::intrusive_ptr<Message> createExceptionResponse(
|
|
const std::exception& e,
|
|
int64_t id) {
|
|
return createExceptionResponse(e.what(), id);
|
|
}
|
|
|
|
c10::intrusive_ptr<Message> createExceptionResponse(
|
|
const std::string& exceptionStr,
|
|
int64_t id) {
|
|
std::vector<char> payload(exceptionStr.begin(), exceptionStr.end());
|
|
return c10::make_intrusive<Message>(
|
|
std::move(payload),
|
|
std::vector<torch::Tensor>(),
|
|
MessageType::EXCEPTION,
|
|
id);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// NB: need to call torch::class_ to register Message in the map returned by
|
|
// c10::getCustomClassTypeMap(). Otherwise, Message cannot be wrapped within
|
|
// an IValue.
|
|
// NB: add this line here instead of in rpc/init.cpp because 1) we have C++
|
|
// only tests that won't run rpc/init.cpp; 2) Message is not meant to be
|
|
// visible from Python.
|
|
static const auto message = torch::class_<Message>("rpc", "_Message");
|
|
|
|
} // namespace
|
|
|
|
} // namespace rpc
|
|
} // namespace distributed
|
|
} // namespace torch
|