mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16106 Differential Revision: D13709490 Pulled By: bddppq fbshipit-source-id: 1b5b32261f06543371f7bd7ac9b11957a5eb4ad0
726 lines
23 KiB
C++
726 lines
23 KiB
C++
#ifndef CAFFE2_UTILS_MATH_H_
|
|
#define CAFFE2_UTILS_MATH_H_
|
|
// This is a simple translation from the old Caffe math interfaces. We aim to
|
|
// still keep it simple, so all platforms would be able to support it fairly
|
|
// easily.
|
|
|
|
// We include the cblas header here so that we can obtain the macros from cblas.
|
|
extern "C" {
|
|
#include "caffe2/utils/cblas.h"
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_ACCELERATE
|
|
#include <Accelerate/Accelerate.h>
|
|
#endif // CAFFE2_USE_ACCELERATE
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/utils/math_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
// TODO: Change dims related arguments to int64_t?
|
|
class Tensor;
|
|
|
|
// An empty class as a placeholder for a math function that has no specific
|
|
// engine specified.
|
|
class CAFFE2_API DefaultEngine {};
|
|
|
|
namespace math {
|
|
|
|
template <typename T, class Context>
|
|
void Exp(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Log(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Cos(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Acos(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sin(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Asin(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Tan(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Atan(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sinh(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Cosh(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void SinCos(const int N, const T* x, T* ys, T* yc, Context* context);
|
|
template <typename T, class Context>
|
|
void Tanh(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Abs(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sqr(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sqrt(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Rsqrt(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Cube(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Cbrt(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Neg(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sign(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Not(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Powx(const int N, const T* a, const T b, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Inv(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Erf(const int N, const T* x, T* y, Context* context);
|
|
|
|
#define C10_DECLARE_COMPARE_OP(Comp) \
|
|
template <typename T, class Context> \
|
|
void Comp(const int N, const T* A, const T* B, bool* C, Context* context); \
|
|
\
|
|
template <typename T, class Context, bool kBroadcast1st = false> \
|
|
void Rowwise##Comp( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
bool* C, \
|
|
Context* context); \
|
|
\
|
|
template <typename T, class Context, bool kBroadcast1st = false> \
|
|
void Colwise##Comp( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
bool* C, \
|
|
Context* context); \
|
|
\
|
|
template <typename T, class Context> \
|
|
void Comp( \
|
|
const int A_ndim, \
|
|
const int* A_dims, \
|
|
const int B_ndim, \
|
|
const int* B_dims, \
|
|
const T* A, \
|
|
const T* B, \
|
|
bool* C, \
|
|
Context* context);
|
|
|
|
C10_DECLARE_COMPARE_OP(EQ)
|
|
C10_DECLARE_COMPARE_OP(NE)
|
|
C10_DECLARE_COMPARE_OP(LT)
|
|
C10_DECLARE_COMPARE_OP(LE)
|
|
C10_DECLARE_COMPARE_OP(GT)
|
|
C10_DECLARE_COMPARE_OP(GE)
|
|
|
|
#undef C10_DECLARE_COMPARE_OP
|
|
|
|
#define C10_DECLARE_BINARY_OP(Func) \
|
|
template <typename T, class Context> \
|
|
void Func(const int N, const T* A, const T* B, T* C, Context* context); \
|
|
\
|
|
template <typename T, class Context, bool kBroadcast1st = false> \
|
|
void Rowwise##Func( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
Context* context); \
|
|
\
|
|
template <typename T, class Context, bool kBroadcast1st = false> \
|
|
void Colwise##Func( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
Context* context); \
|
|
\
|
|
template <typename T, class Context> \
|
|
void Func( \
|
|
const int A_ndim, \
|
|
const int* A_dims, \
|
|
const int B_ndim, \
|
|
const int* B_dims, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
Context* context);
|
|
|
|
C10_DECLARE_BINARY_OP(Add)
|
|
C10_DECLARE_BINARY_OP(Sub)
|
|
C10_DECLARE_BINARY_OP(Mul)
|
|
C10_DECLARE_BINARY_OP(Div)
|
|
|
|
C10_DECLARE_BINARY_OP(And)
|
|
C10_DECLARE_BINARY_OP(Or)
|
|
C10_DECLARE_BINARY_OP(Xor)
|
|
|
|
C10_DECLARE_BINARY_OP(BitwiseAnd)
|
|
C10_DECLARE_BINARY_OP(BitwiseOr)
|
|
C10_DECLARE_BINARY_OP(BitwiseXor)
|
|
|
|
#undef C10_DECLARE_BINARY_OP
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
ReduceMin(const int N, const T* x, T* y, Tensor* scratch_ptr, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
ReduceMax(const int N, const T* x, T* y, Tensor* scratch_ptr, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceMin(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceMax(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceSum(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceMean(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceL1(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void ReduceL2(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Broadcasts X with X_dims to Y with Y_dims.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Broadcast(
|
|
const int X_ndim,
|
|
const int* X_dims,
|
|
const int Y_ndim,
|
|
const int* Y_dims,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Computes mean and variance over axes.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Moments(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T* X,
|
|
T* mean,
|
|
T* variance,
|
|
Context* context);
|
|
|
|
// Computes inv_std from variance.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void InvStd(
|
|
const int N,
|
|
const T epsilon,
|
|
const T* var,
|
|
T* inv_std,
|
|
Context* context);
|
|
|
|
// Adds batch sub-tensors elementwise to output. Stripe is the stripe length
|
|
// and N is the number of elements to add (size of Y).
|
|
template <typename T, class Context>
|
|
CAFFE2_API void AddStripedBatch(
|
|
const int N,
|
|
const T* first,
|
|
T* y,
|
|
const int stripe,
|
|
const int batch,
|
|
Context* context);
|
|
|
|
// Compute the row-wise max of a N*D matrix X, and write it to a N
|
|
// dimensional vector y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
RowwiseMax(const int N, const int D, const T* x, T* y, Context* context);
|
|
|
|
// Compute the column-wise max of a N*D matrix X, and write it to a D
|
|
// dimensional vector y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
ColwiseMax(const int N, const int D, const T* x, T* y, Context* context);
|
|
|
|
// Elemwise maximum of vector x and vector y. z[i] = max(x[i], y[i])
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
ElemwiseMax(const int N, const T* x, const T* y, T* z, Context* context);
|
|
|
|
// Elemwise maximum of vector x and scalar alpha. y[i] = max(x[i], alpha)
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
Maximum(const int N, const float alpha, const T* x, T* y, Context* context);
|
|
|
|
// Transpose tensor X with dims by axes and write the result to tensor Y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Transpose(
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Decaf gemm provides a simpler interface to the gemm functions, with the
|
|
// limitation that the data has to be contiguous in memory.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
CAFFE2_API void Gemm(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const T* A,
|
|
const T* B,
|
|
const float beta,
|
|
T* C,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
// We also provide a gemm that has explicit lda, ldb and ldc specified.
|
|
// In most cases you probably want to use the function above, though.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
CAFFE2_API void GemmEx(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const T alpha,
|
|
const T* A,
|
|
const int lda,
|
|
const T* B,
|
|
const int ldb,
|
|
const T beta,
|
|
T* C,
|
|
const int ldc,
|
|
Context* context);
|
|
|
|
// GemmBatched provides a simple abstraction into library routines
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
CAFFE2_API void GemmBatched(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int batch_size,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const T** A,
|
|
const T** B,
|
|
const float beta,
|
|
T** C,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
CAFFE2_API void GemmStridedBatched(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int batch_size,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const T* A,
|
|
const int A_stride,
|
|
const T* B,
|
|
const int B_stride,
|
|
const float beta,
|
|
T* C,
|
|
const int C_stride,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
// Gemv always takes in a M*N matrix A, and depending on whether we set TransA
|
|
// to Trans, the output is:
|
|
// CblasNoTrans: x is an N dim vector and y is an M dim vector.
|
|
// CblasTrans: x is an M dim vector and y is an N dim vector.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
CAFFE2_API void Gemv(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const int M,
|
|
const int N,
|
|
const float alpha,
|
|
const T* A,
|
|
const T* x,
|
|
const float beta,
|
|
T* y,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Set(const size_t N, const T alpha, T* X, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
RandUniform(const size_t n, const T a, const T b, T* r, Context* context);
|
|
|
|
// Generate n values that sum up to a fixed sum
|
|
// and subject to a restriction a <= x <= b for each x generated
|
|
template <typename T, class Context>
|
|
CAFFE2_API void RandFixedSum(
|
|
const size_t n,
|
|
const T a,
|
|
const T b,
|
|
const T sum,
|
|
T* r,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void RandUniformUnique(
|
|
const size_t n,
|
|
const T a,
|
|
const T b,
|
|
T* r,
|
|
const size_t m,
|
|
const T* avoid,
|
|
Context* context);
|
|
|
|
// Generate n values from synthetic data distribution,
|
|
// define by unique accesses and stack distances
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
RandSyntheticData(const size_t n, const T a, const T b, T* r, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
RandGaussian(const size_t n, const T mean, const T std, T* r, Context* context);
|
|
|
|
// Dot matrix of vector a and b, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
Dot(const int N, const T* a, const T* b, T* y, Context* context);
|
|
|
|
// Sum of vector x, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Sum(
|
|
const int N,
|
|
const T* x,
|
|
T* y,
|
|
Context* context,
|
|
Tensor* scratch_ptr = nullptr);
|
|
|
|
// Sum of squares of vector x, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void SumSqr(
|
|
const int N,
|
|
const T* x,
|
|
T* y,
|
|
Context* context,
|
|
Tensor* scratch_ptr = nullptr);
|
|
|
|
// Select does index selection of the rows a N*D matrix x, and gives the N
|
|
// dimensional vector y that contains the selected data.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void Select(
|
|
const int N,
|
|
const int D,
|
|
const T* x,
|
|
const int* idx,
|
|
T* y,
|
|
Context* context);
|
|
|
|
template <typename TAlpha, typename TData, class Context>
|
|
CAFFE2_API void Scale(
|
|
const int N,
|
|
const TAlpha alpha,
|
|
const TData* x,
|
|
TData* y,
|
|
Context* context);
|
|
|
|
// Different from the Scale function above, if alpha is passed in
|
|
// as a pointer, we will assume that it lives on the Context device,
|
|
// for example on GPU.
|
|
template <typename TAlpha, typename TData, class Context>
|
|
CAFFE2_API void Scale(
|
|
const int N,
|
|
const TAlpha* alpha,
|
|
const TData* x,
|
|
TData* y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
Axpy(const int N, const float alpha, const T* x, T* y, Context* context);
|
|
|
|
// Different from the Axpy function above, if alpha is passed in
|
|
// as a pointer, we will assume that it lives on the Context device,
|
|
// for example on GPU.
|
|
template <typename T, class Context>
|
|
CAFFE2_API void
|
|
Axpy(const int N, const float* alpha, const T* x, T* y, Context* context);
|
|
|
|
template <typename TCoeff, typename TData, class Context>
|
|
CAFFE2_API void Axpby(
|
|
const int N,
|
|
const TCoeff alpha,
|
|
const TData* x,
|
|
const TCoeff b,
|
|
TData* y,
|
|
Context* context);
|
|
|
|
template <typename TCoeff, typename TData, class Context>
|
|
CAFFE2_API void Axpby(
|
|
const int N,
|
|
const TCoeff* alpha,
|
|
const TData* x,
|
|
const TCoeff* b,
|
|
TData* y,
|
|
Context* context);
|
|
|
|
// groups must be 1 for GPU
|
|
// For NHWC order with groups > 1, the result will be layout in
|
|
// NHW G RS C/G order to make data within the same group to be contiguous.
|
|
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
|
|
// for each N and C is the slowest moving dimension among CHW.
|
|
template <typename T, class Context, StorageOrder kOrder>
|
|
CAFFE2_API void Im2Col(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const T* img_data,
|
|
T* col_data,
|
|
Context* context,
|
|
const int groups = 1);
|
|
|
|
// groups must be 1 for GPU
|
|
template <typename T, class Context, StorageOrder kOrder>
|
|
CAFFE2_API void Im2ColNd(
|
|
const int N,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const T* img_data,
|
|
T* col_data,
|
|
Context* context,
|
|
const int groups = 1);
|
|
|
|
// groups must be 1 for GPU
|
|
// For NHWC order with groups > 1, the result will be layout in
|
|
// NHW G RS C/G order to make data within the same group to be contiguous.
|
|
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
|
|
// for each N and C is the slowest moving dimension among CHW.
|
|
template <typename T, class Context, StorageOrder kOrder>
|
|
CAFFE2_API void Col2Im(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int patch_h,
|
|
const int patch_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const T* col_data,
|
|
T* img_data,
|
|
Context* context,
|
|
const int groups = 1);
|
|
|
|
// groups must be 1 for GPU
|
|
// For NHWC order with groups > 1, the result will be layout in
|
|
// NHW G RS C/G order to make data within the same group to be contiguous.
|
|
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
|
|
// for each N and C is the slowest moving dimension among CHW.
|
|
template <typename T, class Context, StorageOrder kOrder>
|
|
CAFFE2_API void Col2ImNd(
|
|
const int N,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const T* col_data,
|
|
T* img_data,
|
|
Context* context,
|
|
const int groups = 1);
|
|
|
|
// Applies a per-channel bias value to each channel of the input
|
|
// image. image_size is H * W
|
|
template <typename T, class Context>
|
|
CAFFE2_API void BiasCHW(
|
|
const T* bias,
|
|
const T* bias_multiplier,
|
|
const int bias_channels,
|
|
const int image_size,
|
|
T* image,
|
|
Context* context);
|
|
|
|
template <class Context>
|
|
CAFFE2_API void CopyMatrix(
|
|
const size_t item_size,
|
|
const int M,
|
|
const int N,
|
|
const void* A,
|
|
const int lda,
|
|
void* B,
|
|
const int ldb,
|
|
Context* context,
|
|
TypeMeta::Copy copy = nullptr);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void CopyMatrix(
|
|
const int M,
|
|
const int N,
|
|
const T* A,
|
|
const int lda,
|
|
T* B,
|
|
const int ldb,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void CopyMatrix(
|
|
const int M,
|
|
const int N,
|
|
const T* A,
|
|
const int A_outer_stride,
|
|
const int A_inner_stride,
|
|
T* B,
|
|
const int B_outer_stride,
|
|
const int B_inner_stride,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void CopyVector(const int N, const T* A, T* B, Context* context);
|
|
|
|
template <typename T, class Context, StorageOrder kOrder>
|
|
CAFFE2_API void AffineChannel(
|
|
const int N,
|
|
const int C,
|
|
const int HxW,
|
|
const T* X,
|
|
const T* scale,
|
|
const T* bias,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void NCHW2NHWC(
|
|
const int N,
|
|
const int C,
|
|
const int HxW,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
CAFFE2_API void NHWC2NCHW(
|
|
const int N,
|
|
const int C,
|
|
const int HxW,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Calculates ceil(a / b). User must be careful to ensure that there
|
|
// is no overflow or underflow in the calculation.
|
|
template <typename T>
|
|
constexpr T divUp(T a, T b) {
|
|
return (a + b - (T)1) / b;
|
|
}
|
|
|
|
// Rounds a up to the next highest multiple of b. User must be careful
|
|
// to ensure that there is no overflow or underflow in the calculation
|
|
// of divUp.
|
|
template <typename T>
|
|
constexpr T roundUp(T a, T b) {
|
|
return divUp<T>(a, b) * b;
|
|
}
|
|
|
|
// Returns log2(n) for a positive integer type
|
|
template <typename T>
|
|
constexpr int integerLog2(T n, int p = 0) {
|
|
return (n <= 1) ? p : integerLog2(n / 2, p + 1);
|
|
}
|
|
|
|
// Returns the next highest power-of-2 for an integer type
|
|
template <typename T>
|
|
constexpr T integerNextHighestPowerOf2(T v) {
|
|
return (integerIsPowerOf2(v) ? (T)2 * v : ((T)1 << (integerLog2(v) + 1)));
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace caffe2
|
|
|
|
#include "caffe2/utils/math-detail.h"
|
|
#endif // CAFFE2_UTILS_MATH_H_
|