Files
pytorch/torch/csrc/cuda/shared/nvtx.cpp
PyTorch MergeBot 19f851ce10 Revert "Simplify nvtx3 CMake handling, always use nvtx3 (#153784)"
This reverts commit 099d0d6121125062ebc05771c8330cb7cd8d053a.

Reverted https://github.com/pytorch/pytorch/pull/153784 on behalf of https://github.com/Camyll due to breaking internal tests and cuda 12.4 builds still used in CI ([comment](https://github.com/pytorch/pytorch/pull/153784#issuecomment-3001702310))
2025-06-24 20:02:07 +00:00

124 lines
3.1 KiB
C++

#ifdef _WIN32
#include <wchar.h> // _wgetenv for nvtx
#endif
#ifndef ROCM_ON_WINDOWS
#ifdef TORCH_CUDA_USE_NVTX3
#include <nvtx3/nvtx3.hpp>
#else // TORCH_CUDA_USE_NVTX3
#include <nvToolsExt.h>
#endif // TORCH_CUDA_USE_NVTX3
#else // ROCM_ON_WINDOWS
#include <c10/util/Exception.h>
#endif // ROCM_ON_WINDOWS
#include <c10/cuda/CUDAException.h>
#include <cuda_runtime.h>
#include <torch/csrc/utils/pybind.h>
namespace torch::cuda::shared {
#ifndef ROCM_ON_WINDOWS
struct RangeHandle {
nvtxRangeId_t id;
const char* msg;
};
static void device_callback_range_end(void* userData) {
RangeHandle* handle = ((RangeHandle*)userData);
nvtxRangeEnd(handle->id);
free((void*)handle->msg);
free((void*)handle);
}
static void device_nvtxRangeEnd(void* handle, std::intptr_t stream) {
C10_CUDA_CHECK(cudaLaunchHostFunc(
(cudaStream_t)stream, device_callback_range_end, handle));
}
static void device_callback_range_start(void* userData) {
RangeHandle* handle = ((RangeHandle*)userData);
handle->id = nvtxRangeStartA(handle->msg);
}
static void* device_nvtxRangeStart(const char* msg, std::intptr_t stream) {
auto handle = static_cast<RangeHandle*>(calloc(1, sizeof(RangeHandle)));
handle->msg = strdup(msg);
handle->id = 0;
TORCH_CHECK(
cudaLaunchHostFunc(
(cudaStream_t)stream, device_callback_range_start, (void*)handle) ==
cudaSuccess);
return handle;
}
void initNvtxBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
#ifdef TORCH_CUDA_USE_NVTX3
auto nvtx = m.def_submodule("_nvtx", "nvtx3 bindings");
#else
auto nvtx = m.def_submodule("_nvtx", "libNvToolsExt.so bindings");
#endif
nvtx.def("rangePushA", nvtxRangePushA);
nvtx.def("rangePop", nvtxRangePop);
nvtx.def("rangeStartA", nvtxRangeStartA);
nvtx.def("rangeEnd", nvtxRangeEnd);
nvtx.def("markA", nvtxMarkA);
nvtx.def("deviceRangeStart", device_nvtxRangeStart);
nvtx.def("deviceRangeEnd", device_nvtxRangeEnd);
}
#else // ROCM_ON_WINDOWS
static void printUnavailableWarning() {
TORCH_WARN_ONCE("Warning: roctracer isn't available on Windows");
}
static int rangePushA(const std::string&) {
printUnavailableWarning();
return 0;
}
static int rangePop() {
printUnavailableWarning();
return 0;
}
static int rangeStartA(const std::string&) {
printUnavailableWarning();
return 0;
}
static void rangeEnd(int) {
printUnavailableWarning();
}
static void markA(const std::string&) {
printUnavailableWarning();
}
static py::object deviceRangeStart(const std::string&, std::intptr_t) {
printUnavailableWarning();
return py::none(); // Return an appropriate default object
}
static void deviceRangeEnd(py::object, std::intptr_t) {
printUnavailableWarning();
}
void initNvtxBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
auto nvtx = m.def_submodule("_nvtx", "unavailable");
nvtx.def("rangePushA", rangePushA);
nvtx.def("rangePop", rangePop);
nvtx.def("rangeStartA", rangeStartA);
nvtx.def("rangeEnd", rangeEnd);
nvtx.def("markA", markA);
nvtx.def("deviceRangeStart", deviceRangeStart);
nvtx.def("deviceRangeEnd", deviceRangeEnd);
}
#endif // ROCM_ON_WINDOWS
} // namespace torch::cuda::shared