mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33915 Closes: https://github.com/pytorch/pytorch/issues/32963 Test Plan: build bot Reviewed By: jjlilley Differential Revision: D20074714 fbshipit-source-id: ee89e76f547a1da71825a317c096176524504290
252 lines
8.7 KiB
C++
252 lines
8.7 KiB
C++
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
|
|
|
namespace torch {
|
|
namespace distributed {
|
|
namespace rpc {
|
|
|
|
constexpr size_t WorkerInfo::MAX_NAME_LEN;
|
|
|
|
// Large Time Duration for waiting on the condition variable until the map is
|
|
// population. Cannot use
|
|
// std::chrono::time_point<std::chrono::steady_clock>::max() due to a known
|
|
// overflow-related bug.
|
|
constexpr auto kLargeTimeDuration = std::chrono::hours(10000);
|
|
|
|
RpcAgent::RpcAgent(
|
|
WorkerInfo workerId,
|
|
std::unique_ptr<RequestCallback> cb,
|
|
std::chrono::milliseconds rpcTimeout)
|
|
: workerInfo_(std::move(workerId)),
|
|
cb_(std::move(cb)),
|
|
rpcTimeout_(rpcTimeout),
|
|
profilingEnabled_(false),
|
|
rpcAgentRunning_(false) {}
|
|
|
|
RpcAgent::~RpcAgent() {
|
|
cleanup();
|
|
}
|
|
|
|
void RpcAgent::start() {
|
|
rpcAgentRunning_.store(true);
|
|
rpcRetryThread_ = std::thread(&RpcAgent::retryExpiredRpcs, this);
|
|
startImpl();
|
|
}
|
|
|
|
void RpcAgent::cleanup() {
|
|
rpcAgentRunning_.store(false);
|
|
if (rpcRetryThread_.joinable()) {
|
|
rpcRetryMapCV_.notify_one();
|
|
rpcRetryThread_.join();
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<FutureMessage> RpcAgent::sendWithRetries(
|
|
const WorkerInfo& to,
|
|
Message&& message,
|
|
RpcRetryOptions retryOptions) {
|
|
TORCH_CHECK(retryOptions.maxRetries >= 0, "maxRetries cannot be negative.");
|
|
TORCH_CHECK(
|
|
retryOptions.retryBackoff >= 1,
|
|
"maxRetries cannot be exponentially decaying.");
|
|
TORCH_CHECK(
|
|
retryOptions.rpcRetryDuration.count() >= 0,
|
|
"rpcRetryDuration cannot be negative.");
|
|
|
|
auto originalFuture = std::make_shared<FutureMessage>();
|
|
steady_clock_time_point newTime =
|
|
computeNewRpcRetryTime(retryOptions, /* retryCount */ 0);
|
|
// Making a copy of the message so it can be retried after the first send.
|
|
Message msgCopy = message;
|
|
auto fm = send(to, std::move(message));
|
|
auto firstRetryRpc = std::make_shared<RpcRetryInfo>(
|
|
to,
|
|
std::move(msgCopy),
|
|
originalFuture,
|
|
/* retryCount */ 0,
|
|
retryOptions);
|
|
|
|
fm->addCallback([this, newTime, firstRetryRpc](
|
|
const rpc::Message& lambdaMessage,
|
|
const c10::optional<utils::FutureError>& futErr) {
|
|
rpcRetryCallback(lambdaMessage, futErr, newTime, firstRetryRpc);
|
|
});
|
|
|
|
return originalFuture;
|
|
}
|
|
|
|
void RpcAgent::retryExpiredRpcs() {
|
|
while (rpcAgentRunning_.load()) {
|
|
std::unique_lock<std::mutex> lock(rpcRetryMutex_);
|
|
|
|
// We must continue sleeping as long as the RPC Agent is running and when
|
|
// either the Retry Map is empty, or when the Retry Map's earliest expiring
|
|
// RPC is set to be retried in the future.
|
|
steady_clock_time_point earliestTimeout =
|
|
std::chrono::steady_clock::now() + kLargeTimeDuration;
|
|
|
|
for (;;) {
|
|
if (!rpcAgentRunning_.load())
|
|
return;
|
|
if (std::chrono::steady_clock::now() >= earliestTimeout)
|
|
break;
|
|
if (!rpcRetryMap_.empty()) {
|
|
earliestTimeout = rpcRetryMap_.begin()->first;
|
|
}
|
|
rpcRetryMapCV_.wait_until(lock, earliestTimeout);
|
|
}
|
|
|
|
// Updating these since something may have been added to the map while this
|
|
// thread was sleeping.
|
|
earliestTimeout = rpcRetryMap_.begin()->first;
|
|
auto& earliestRpcList = rpcRetryMap_.begin()->second;
|
|
|
|
// We iterate through all the RPC's set to be retried at the current
|
|
// timepoint, resend those RPC's, and add the RPC's and their futures to
|
|
// a list to later attach callbacks. These callbacks either schedule
|
|
// the RPC for a future retry or marks it with success/error depending on
|
|
// the outcome of the current send. Then, we clean up the rpcRetryMap_.
|
|
for (auto it = earliestRpcList.begin(); it != earliestRpcList.end();
|
|
/* no increment */) {
|
|
auto& earliestRpc = *it;
|
|
// Making a copy of the message so it can be retried in the future.
|
|
Message msgCopy = earliestRpc->message_;
|
|
auto fm = send(earliestRpc->to_, std::move(msgCopy));
|
|
futures.emplace_back(fm, earliestRpc);
|
|
|
|
// A callback will be attached to all futures for the retries in this
|
|
// list. Thus they will either be rescheduled for future retries or they
|
|
// will be marked as complete. We can safely delete them from the retry
|
|
// Map for the current timepoint.
|
|
it = earliestRpcList.erase(it);
|
|
}
|
|
|
|
lock.unlock();
|
|
// We attach callbacks to the futures outside of the lock to prevent
|
|
// potential deadlocks.
|
|
for (const auto& it : futures) {
|
|
auto fm = it.first;
|
|
auto earliestRpc = it.second;
|
|
steady_clock_time_point newTime = computeNewRpcRetryTime(
|
|
earliestRpc->options_, earliestRpc->retryCount_);
|
|
earliestRpc->retryCount_++;
|
|
|
|
fm->addCallback([this, newTime, earliestRpc](
|
|
const rpc::Message& message,
|
|
const c10::optional<utils::FutureError>& futErr) {
|
|
rpcRetryCallback(message, futErr, newTime, earliestRpc);
|
|
});
|
|
}
|
|
|
|
// If there are no more RPC's set to be retried at the current timepoint,
|
|
// we can remove the corresponsing unordered_set from the retry map. We
|
|
// must also clear the futures vector.
|
|
{
|
|
std::lock_guard<std::mutex> retryMapLock(rpcRetryMutex_);
|
|
futures.clear();
|
|
if (earliestRpcList.empty()) {
|
|
rpcRetryMap_.erase(earliestTimeout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RpcAgent::rpcRetryCallback(
|
|
const rpc::Message& message,
|
|
const c10::optional<utils::FutureError>& futErr,
|
|
steady_clock_time_point newTime,
|
|
std::shared_ptr<RpcRetryInfo> earliestRpc) {
|
|
if (futErr) {
|
|
// Adding one since we want to include the original send as well and not
|
|
// just the retry count.
|
|
LOG(INFO) << "Send try " << std::to_string(earliestRpc->retryCount_ + 1)
|
|
<< " failed";
|
|
if (!rpcAgentRunning_.load()) {
|
|
// If the RPC Agent has shutdown, we cannot retry messages. Thus we mark
|
|
// the future with an error since the RPC was never completed
|
|
// successfully.
|
|
std::string errorMessage = c10::str(
|
|
"RPC Agent is no longer running on Node ",
|
|
RpcAgent::getWorkerInfo().id_,
|
|
". Cannot retry message of type ",
|
|
message.type(),
|
|
".");
|
|
earliestRpc->originalFuture_->setError(errorMessage);
|
|
} else if (earliestRpc->retryCount_ < earliestRpc->options_.maxRetries) {
|
|
// If the previous future completed with an error and we haven't
|
|
// completed maxRetries send attempts, we move the earliestRpc
|
|
// struct to a new time point in the retry map (effectively
|
|
// scheduling it for a future retry.)
|
|
{
|
|
std::lock_guard<std::mutex> retryMapLock(rpcRetryMutex_);
|
|
rpcRetryMap_[newTime].emplace(std::move(earliestRpc));
|
|
}
|
|
// The retry thread waits for the map to be populated. Thus we notify
|
|
// once an item has been added.
|
|
rpcRetryMapCV_.notify_one();
|
|
} else {
|
|
// We have completed maxRetries send attempts. We're now marking
|
|
// the future with an error.
|
|
std::string errorMessage = c10::str(
|
|
"The RPC has not succeeded after the specified number of max retries (",
|
|
earliestRpc->options_.maxRetries,
|
|
").");
|
|
earliestRpc->originalFuture_->setError(errorMessage);
|
|
}
|
|
} else {
|
|
// This try succeeded, so we can make the original future as complete.
|
|
earliestRpc->originalFuture_->markCompleted(message);
|
|
}
|
|
}
|
|
|
|
const WorkerInfo& RpcAgent::getWorkerInfo() const {
|
|
return workerInfo_;
|
|
}
|
|
|
|
std::shared_ptr<RpcAgent> RpcAgent::currentRpcAgent_ = nullptr;
|
|
|
|
bool RpcAgent::isCurrentRpcAgentSet() {
|
|
return currentRpcAgent_ != nullptr;
|
|
}
|
|
|
|
std::shared_ptr<RpcAgent> RpcAgent::getCurrentRpcAgent() {
|
|
TORCH_INTERNAL_ASSERT(currentRpcAgent_, "Current RPC agent is not set!");
|
|
return currentRpcAgent_;
|
|
}
|
|
|
|
void RpcAgent::setCurrentRpcAgent(std::shared_ptr<RpcAgent> rpcAgent) {
|
|
if (rpcAgent) {
|
|
TORCH_INTERNAL_ASSERT(!currentRpcAgent_, "Current RPC agent is set!");
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(currentRpcAgent_, "Current RPC agent is not set!");
|
|
}
|
|
currentRpcAgent_ = std::move(rpcAgent);
|
|
}
|
|
|
|
void RpcAgent::setTypeResolver(std::shared_ptr<TypeResolver> typeResolver) {
|
|
typeResolver_ = std::move(typeResolver);
|
|
}
|
|
|
|
std::shared_ptr<TypeResolver> RpcAgent::getTypeResolver() {
|
|
TORCH_INTERNAL_ASSERT(typeResolver_, "Type resolver is not set!");
|
|
return typeResolver_;
|
|
}
|
|
|
|
void RpcAgent::enableGILProfiling(bool flag) {
|
|
profilingEnabled_ = flag;
|
|
}
|
|
|
|
bool RpcAgent::isGILProfilingEnabled() {
|
|
return profilingEnabled_.load();
|
|
}
|
|
|
|
std::unordered_map<std::string, std::string> RpcAgent::getDebugInfo() {
|
|
/* This would later include more info other than metrics for eg: may include
|
|
stack traces for the threads owned by the agent */
|
|
// Default implementation: return getMetrics().
|
|
return getMetrics();
|
|
}
|
|
|
|
} // namespace rpc
|
|
} // namespace distributed
|
|
} // namespace torch
|