Files
pytorch/torch/csrc/distributed/rpc/py_rref.cpp
Shihao Xu 17ceb6941f [RPC] Create local RRef<ModuleInterface> remotely in Python, use it remotely in TorchScript (#34183)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34183

https://github.com/pytorch/pytorch/pull/33263 enhanced the RRef Python constructor to infer most types, by `jit::tryToInferType(..)`.

But this helper function can't infer `ScriptModule` type due to `ScriptModule`'s special per-Module type singleton logic, so it's still not possible for an Python-created RRef to know the JIT type of it's contained `ScriptModule`.

Instead of inferring the specific type of a Module, which could leads to too many candidate types (due to Module's multiple inheritance possibility), it's more straightforward to set it's type as a user-specified `ModuleInterface` type.

We added an optional argument `type_hint` for users to mark an `RRef` for what `ModuleInterface` type it's holds.

ghstack-source-id: 99649379

(Note: this ignores all push blocking failures!)

Test Plan:
Aspects that need to be confirmed in the test cases

https://fb.quip.com/aGxRAh2lCg05

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \
&& buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_create_local_script_class_rref

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \
&& buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_create_local_script_module_rref

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \
&& buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_return_local_script_class_rref_in_py_and_use_in_script

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \
&& buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_return_local_script_module_rref_in_py_and_use_in_script

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \
&& buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_torchscript_function_exception
```

Differential Revision: D7065050

fbshipit-source-id: e10210c0996622969e499e4a35b0659b36787c1c
2020-03-06 08:28:22 -08:00

202 lines
7.0 KiB
C++

#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/python_functions.h>
#include <torch/csrc/distributed/rpc/python_rpc_handler.h>
#include <torch/csrc/distributed/rpc/rref_context.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/pybind_utils.h>
namespace torch {
namespace distributed {
namespace rpc {
///////////////////// Pickle/Unpickle Helplers ////////////////////////////
namespace {
py::tuple toPyTuple(const RRefForkData& rrefForkData) {
// add GIL as it is contructing a py::object
pybind11::gil_scoped_acquire ag;
return py::make_tuple(
rrefForkData.ownerId_,
rrefForkData.rrefId_.createdOn_,
rrefForkData.rrefId_.localId_,
rrefForkData.forkId_.createdOn_,
rrefForkData.forkId_.localId_,
rrefForkData.parent_,
rrefForkData.typeStr_);
}
RRefForkData fromPyTuple(const py::tuple& pyTuple) {
// add GIL as it is accessing a py::object
pybind11::gil_scoped_acquire ag;
TORCH_INTERNAL_ASSERT(
pyTuple.size() == RFD_TUPLE_SIZE,
"Pickled RRefForkData must contain ",
RFD_TUPLE_SIZE,
" numbers.");
worker_id_t ownerId = pyTuple[OWNER_IDX].cast<worker_id_t>();
// const reference will extend the lifetime of the temporary variable
const RRefId& rrefId = RRefId(
pyTuple[RREFID_ON_IDX].cast<worker_id_t>(),
pyTuple[RREFID_ID_IDX].cast<local_id_t>());
const RRefId& forkId = RRefId(
pyTuple[FORKID_ON_IDX].cast<worker_id_t>(),
pyTuple[FORKID_ID_IDX].cast<local_id_t>());
worker_id_t parent = pyTuple[PARENT_IDX].cast<worker_id_t>();
const std::string& typeStr = pyTuple[TYPE_IDX].cast<std::string>();
return RRefForkData(ownerId, rrefId, forkId, parent, typeStr);
}
TypePtr tryInferTypeWithTypeHint(
const py::object& value,
const py::object& type_hint) {
// If the py::object to be contained by the RRef is a ScripModule, we enforce
// users to specify its ModuleInterface type.
if (auto module = jit::script::as_module(value)) {
TORCH_CHECK(
!type_hint.is_none(),
"The RRef being created contains a ScriptModule, "
"must provide its ModuleInterface type hint. ");
c10::QualifiedName type_qualified_name = c10::QualifiedName(
py::cast<std::string>(py::module::import("torch.jit")
.attr("_qualified_name")(type_hint)));
TypePtr type_hint_ptr =
jit::get_python_cu()->get_interface(type_qualified_name);
TORCH_CHECK(
type_hint_ptr != nullptr &&
module.value().type()->isSubtypeOf(type_hint_ptr),
module.value().type()->python_str(),
" is not a subtype of the type hint: ",
type_qualified_name.qualifiedName(),
", did you pass a valid interface type?");
return type_hint_ptr;
} else {
TORCH_CHECK(
type_hint.is_none(),
"type_hint should only be specified when the RRef being created contains a ScriptModule.");
}
// NB: `jit::tryToInferType(..)` infers types including ScriptClass, but
// excluding ScripModule.
jit::InferredType type_inferred = jit::tryToInferType(value);
if (type_inferred.success()) {
// If we could infer the type from the pyobject, we create
// the RRef with the IValue of that type.
return type_inferred.type();
}
// Otherwise it's a pure pyobject, create the RRef
// that holds an IValue of an pyobject.
return PyObjectType::get();
} // namespace
} // namespace
/////////////////////////// PyRRef //////////////////////////////////
PyRRef::PyRRef(c10::intrusive_ptr<RRef> rref) : rref_(std::move(rref)) {
TORCH_CHECK(rref_, "PyRRef must not wrap nullptr");
}
PyRRef::PyRRef(const py::object& value, const py::object& type_hint)
: PyRRef([&value, &type_hint]() {
TypePtr elem_type = tryInferTypeWithTypeHint(value, type_hint);
auto rref = RRefContext::getInstance().createOwnerRRef(elem_type);
py::object copy(value); // increases refcount
IValue ivalue = jit::toIValue(std::move(copy), elem_type);
rref->setValue(std::move(ivalue));
return rref;
}()) {}
bool PyRRef::isOwner() const {
return rref_->isOwner();
}
WorkerInfo PyRRef::owner() const {
return RRefContext::getInstance().agent()->getWorkerInfo(rref_->owner());
}
py::object PyRRef::toHere() {
if (rref_->isOwner()) {
return localValue();
} else {
// toHere() calls python_rpc_handler which acquires GIL when UserRRef holds
// a python object
IValue value =
c10::static_intrusive_pointer_cast<UserRRef>(rref_)->toHere();
if (rref_->isPyObj()) {
// python_rpc_handler deserialization will acquires GIL.
auto rfr_values = value.toTuple()->elements();
return PythonRpcHandler::getInstance().deserialize(
SerializedPyObj::fromIValues(rfr_values));
} else {
// acquiring GIL as torch::jit::toPyObject creates new py::object
// without grabbing the GIL.
pybind11::gil_scoped_acquire ag;
return torch::jit::toPyObject(std::move(value));
}
}
}
py::object PyRRef::localValue() {
TORCH_CHECK(
rref_->isOwner(),
"Cannot call localValue() on a non-local reference. Call it on ",
owner().name_);
py::object res;
auto value = c10::static_intrusive_pointer_cast<OwnerRRef>(rref_)->getValue();
auto& rpcHandler = PythonRpcHandler::getInstance();
{
// acquiring GIL as torch::jit::toPyObject creates new py::object without
// grabbing the GIL.
pybind11::gil_scoped_acquire ag;
res = torch::jit::toPyObject(std::move(value));
rpcHandler.handleExceptionGILHeld(res);
}
return res;
}
std::string PyRRef::str() const {
std::ostringstream ss;
if (rref_->isOwner()) {
ss << "OwnerRRef(" << rref_->rrefId() << ")";
} else {
ss << "UserRRef(RRefId = " << rref_->rrefId() << ", ForkId = "
<< c10::static_intrusive_pointer_cast<UserRRef>(rref_)->forkId() << ")";
}
return ss.str();
}
py::tuple PyRRef::pickle() const {
auto& ctx = RRefContext::getInstance();
// TODO: use a dispatch table to pickle/unpickle an RRef, and only only
// install the dispatch table only when there are indeed RPC activities. As
// a counter example, checkpointing a model with RRefs should not trigger
// forks to be added as a fork or a child.
auto rrefForkData = ctx.prepareChildFork(rref_);
return toPyTuple(rrefForkData);
}
PyRRef PyRRef::unpickle(const py::tuple& pyTuple) {
auto& ctx = RRefContext::getInstance();
auto rrefForkData = fromPyTuple(pyTuple);
TypePtr rrefType =
PythonRpcHandler::getInstance().parseTypeFromStr(rrefForkData.typeStr_);
c10::intrusive_ptr<RRef> rref = ctx.getOrCreateRRef(rrefForkData, rrefType);
ctx.notifyOwnerAndParentOfFork(
rrefForkData.forkId_, rrefForkData.parent_, rref);
return PyRRef(std::move(rref));
}
c10::IValue PyRRef::toIValue() {
// cast to RRefInterface to hold it into IValue
auto rrefPtr = c10::static_intrusive_pointer_cast<c10::RRefInterface>(rref_);
return IValue(rrefPtr);
}
} // namespace rpc
} // namespace distributed
} // namespace torch