mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34183 https://github.com/pytorch/pytorch/pull/33263 enhanced the RRef Python constructor to infer most types, by `jit::tryToInferType(..)`. But this helper function can't infer `ScriptModule` type due to `ScriptModule`'s special per-Module type singleton logic, so it's still not possible for an Python-created RRef to know the JIT type of it's contained `ScriptModule`. Instead of inferring the specific type of a Module, which could leads to too many candidate types (due to Module's multiple inheritance possibility), it's more straightforward to set it's type as a user-specified `ModuleInterface` type. We added an optional argument `type_hint` for users to mark an `RRef` for what `ModuleInterface` type it's holds. ghstack-source-id: 99649379 (Note: this ignores all push blocking failures!) Test Plan: Aspects that need to be confirmed in the test cases https://fb.quip.com/aGxRAh2lCg05 ``` buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \ && buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_create_local_script_class_rref buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \ && buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_create_local_script_module_rref buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \ && buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_return_local_script_class_rref_in_py_and_use_in_script buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \ && buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_return_local_script_module_rref_in_py_and_use_in_script buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork \ && buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par -r test_torchscript_function_exception ``` Differential Revision: D7065050 fbshipit-source-id: e10210c0996622969e499e4a35b0659b36787c1c
202 lines
7.0 KiB
C++
202 lines
7.0 KiB
C++
#include <torch/csrc/distributed/rpc/py_rref.h>
|
|
|
|
#include <torch/csrc/distributed/rpc/python_functions.h>
|
|
#include <torch/csrc/distributed/rpc/python_rpc_handler.h>
|
|
#include <torch/csrc/distributed/rpc/rref_context.h>
|
|
#include <torch/csrc/jit/python/module_python.h>
|
|
#include <torch/csrc/jit/python/pybind_utils.h>
|
|
|
|
namespace torch {
|
|
namespace distributed {
|
|
namespace rpc {
|
|
|
|
///////////////////// Pickle/Unpickle Helplers ////////////////////////////
|
|
|
|
namespace {
|
|
py::tuple toPyTuple(const RRefForkData& rrefForkData) {
|
|
// add GIL as it is contructing a py::object
|
|
pybind11::gil_scoped_acquire ag;
|
|
return py::make_tuple(
|
|
rrefForkData.ownerId_,
|
|
rrefForkData.rrefId_.createdOn_,
|
|
rrefForkData.rrefId_.localId_,
|
|
rrefForkData.forkId_.createdOn_,
|
|
rrefForkData.forkId_.localId_,
|
|
rrefForkData.parent_,
|
|
rrefForkData.typeStr_);
|
|
}
|
|
RRefForkData fromPyTuple(const py::tuple& pyTuple) {
|
|
// add GIL as it is accessing a py::object
|
|
pybind11::gil_scoped_acquire ag;
|
|
TORCH_INTERNAL_ASSERT(
|
|
pyTuple.size() == RFD_TUPLE_SIZE,
|
|
"Pickled RRefForkData must contain ",
|
|
RFD_TUPLE_SIZE,
|
|
" numbers.");
|
|
worker_id_t ownerId = pyTuple[OWNER_IDX].cast<worker_id_t>();
|
|
// const reference will extend the lifetime of the temporary variable
|
|
const RRefId& rrefId = RRefId(
|
|
pyTuple[RREFID_ON_IDX].cast<worker_id_t>(),
|
|
pyTuple[RREFID_ID_IDX].cast<local_id_t>());
|
|
const RRefId& forkId = RRefId(
|
|
pyTuple[FORKID_ON_IDX].cast<worker_id_t>(),
|
|
pyTuple[FORKID_ID_IDX].cast<local_id_t>());
|
|
|
|
worker_id_t parent = pyTuple[PARENT_IDX].cast<worker_id_t>();
|
|
const std::string& typeStr = pyTuple[TYPE_IDX].cast<std::string>();
|
|
|
|
return RRefForkData(ownerId, rrefId, forkId, parent, typeStr);
|
|
}
|
|
|
|
TypePtr tryInferTypeWithTypeHint(
|
|
const py::object& value,
|
|
const py::object& type_hint) {
|
|
// If the py::object to be contained by the RRef is a ScripModule, we enforce
|
|
// users to specify its ModuleInterface type.
|
|
if (auto module = jit::script::as_module(value)) {
|
|
TORCH_CHECK(
|
|
!type_hint.is_none(),
|
|
"The RRef being created contains a ScriptModule, "
|
|
"must provide its ModuleInterface type hint. ");
|
|
c10::QualifiedName type_qualified_name = c10::QualifiedName(
|
|
py::cast<std::string>(py::module::import("torch.jit")
|
|
.attr("_qualified_name")(type_hint)));
|
|
TypePtr type_hint_ptr =
|
|
jit::get_python_cu()->get_interface(type_qualified_name);
|
|
TORCH_CHECK(
|
|
type_hint_ptr != nullptr &&
|
|
module.value().type()->isSubtypeOf(type_hint_ptr),
|
|
module.value().type()->python_str(),
|
|
" is not a subtype of the type hint: ",
|
|
type_qualified_name.qualifiedName(),
|
|
", did you pass a valid interface type?");
|
|
return type_hint_ptr;
|
|
} else {
|
|
TORCH_CHECK(
|
|
type_hint.is_none(),
|
|
"type_hint should only be specified when the RRef being created contains a ScriptModule.");
|
|
}
|
|
|
|
// NB: `jit::tryToInferType(..)` infers types including ScriptClass, but
|
|
// excluding ScripModule.
|
|
jit::InferredType type_inferred = jit::tryToInferType(value);
|
|
if (type_inferred.success()) {
|
|
// If we could infer the type from the pyobject, we create
|
|
// the RRef with the IValue of that type.
|
|
return type_inferred.type();
|
|
}
|
|
|
|
// Otherwise it's a pure pyobject, create the RRef
|
|
// that holds an IValue of an pyobject.
|
|
return PyObjectType::get();
|
|
} // namespace
|
|
|
|
} // namespace
|
|
|
|
/////////////////////////// PyRRef //////////////////////////////////
|
|
|
|
PyRRef::PyRRef(c10::intrusive_ptr<RRef> rref) : rref_(std::move(rref)) {
|
|
TORCH_CHECK(rref_, "PyRRef must not wrap nullptr");
|
|
}
|
|
|
|
PyRRef::PyRRef(const py::object& value, const py::object& type_hint)
|
|
: PyRRef([&value, &type_hint]() {
|
|
TypePtr elem_type = tryInferTypeWithTypeHint(value, type_hint);
|
|
auto rref = RRefContext::getInstance().createOwnerRRef(elem_type);
|
|
py::object copy(value); // increases refcount
|
|
IValue ivalue = jit::toIValue(std::move(copy), elem_type);
|
|
rref->setValue(std::move(ivalue));
|
|
return rref;
|
|
}()) {}
|
|
|
|
bool PyRRef::isOwner() const {
|
|
return rref_->isOwner();
|
|
}
|
|
|
|
WorkerInfo PyRRef::owner() const {
|
|
return RRefContext::getInstance().agent()->getWorkerInfo(rref_->owner());
|
|
}
|
|
|
|
py::object PyRRef::toHere() {
|
|
if (rref_->isOwner()) {
|
|
return localValue();
|
|
} else {
|
|
// toHere() calls python_rpc_handler which acquires GIL when UserRRef holds
|
|
// a python object
|
|
IValue value =
|
|
c10::static_intrusive_pointer_cast<UserRRef>(rref_)->toHere();
|
|
if (rref_->isPyObj()) {
|
|
// python_rpc_handler deserialization will acquires GIL.
|
|
auto rfr_values = value.toTuple()->elements();
|
|
return PythonRpcHandler::getInstance().deserialize(
|
|
SerializedPyObj::fromIValues(rfr_values));
|
|
} else {
|
|
// acquiring GIL as torch::jit::toPyObject creates new py::object
|
|
// without grabbing the GIL.
|
|
pybind11::gil_scoped_acquire ag;
|
|
return torch::jit::toPyObject(std::move(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
py::object PyRRef::localValue() {
|
|
TORCH_CHECK(
|
|
rref_->isOwner(),
|
|
"Cannot call localValue() on a non-local reference. Call it on ",
|
|
owner().name_);
|
|
|
|
py::object res;
|
|
auto value = c10::static_intrusive_pointer_cast<OwnerRRef>(rref_)->getValue();
|
|
auto& rpcHandler = PythonRpcHandler::getInstance();
|
|
{
|
|
// acquiring GIL as torch::jit::toPyObject creates new py::object without
|
|
// grabbing the GIL.
|
|
pybind11::gil_scoped_acquire ag;
|
|
res = torch::jit::toPyObject(std::move(value));
|
|
rpcHandler.handleExceptionGILHeld(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
std::string PyRRef::str() const {
|
|
std::ostringstream ss;
|
|
if (rref_->isOwner()) {
|
|
ss << "OwnerRRef(" << rref_->rrefId() << ")";
|
|
} else {
|
|
ss << "UserRRef(RRefId = " << rref_->rrefId() << ", ForkId = "
|
|
<< c10::static_intrusive_pointer_cast<UserRRef>(rref_)->forkId() << ")";
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
py::tuple PyRRef::pickle() const {
|
|
auto& ctx = RRefContext::getInstance();
|
|
// TODO: use a dispatch table to pickle/unpickle an RRef, and only only
|
|
// install the dispatch table only when there are indeed RPC activities. As
|
|
// a counter example, checkpointing a model with RRefs should not trigger
|
|
// forks to be added as a fork or a child.
|
|
auto rrefForkData = ctx.prepareChildFork(rref_);
|
|
return toPyTuple(rrefForkData);
|
|
}
|
|
|
|
PyRRef PyRRef::unpickle(const py::tuple& pyTuple) {
|
|
auto& ctx = RRefContext::getInstance();
|
|
auto rrefForkData = fromPyTuple(pyTuple);
|
|
TypePtr rrefType =
|
|
PythonRpcHandler::getInstance().parseTypeFromStr(rrefForkData.typeStr_);
|
|
c10::intrusive_ptr<RRef> rref = ctx.getOrCreateRRef(rrefForkData, rrefType);
|
|
ctx.notifyOwnerAndParentOfFork(
|
|
rrefForkData.forkId_, rrefForkData.parent_, rref);
|
|
return PyRRef(std::move(rref));
|
|
}
|
|
|
|
c10::IValue PyRRef::toIValue() {
|
|
// cast to RRefInterface to hold it into IValue
|
|
auto rrefPtr = c10::static_intrusive_pointer_cast<c10::RRefInterface>(rref_);
|
|
return IValue(rrefPtr);
|
|
}
|
|
|
|
} // namespace rpc
|
|
} // namespace distributed
|
|
} // namespace torch
|