Files
pytorch/torch/csrc/jit/serialization/flatbuffer_serializer.cpp
cyy 70d7638b0d Fix clang-tidy suppression in torch/csrc/jit (#152271)
Remove some clang-tidy suppression in torch/csrc/jit by applying fixes or refactoring.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152271
Approved by: https://github.com/Skylion007, https://github.com/malfet

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-04-27 21:18:39 +00:00

861 lines
30 KiB
C++

#include <torch/csrc/jit/serialization/flatbuffer_serializer.h>
#ifdef FLATBUFFERS_VERSION_MAJOR
#error "flatbuffer_serializer.h must not include any flatbuffers headers"
#endif // FLATBUFFERS_VERSION_MAJOR
#include <fstream>
#include <functional>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <ATen/ATen.h>
#include <c10/core/CPUAllocator.h>
#include <c10/util/Exception.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/mobile/code.h>
#include <torch/csrc/jit/mobile/train/export_data.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/instruction.h>
#if defined(FB_XPLAT_BUILD) || defined(FBCODE_CAFFE2)
#include <torch/csrc/jit/serialization/mobile_bytecode_generated_fbsource.h> // NOLINT
namespace flatbuffers = flatbuffers_fbsource;
#define FLATBUFFERS_MAX_ALIGNMENT FLATBUFFERS_FBSOURCE_MAX_ALIGNMENT
#else
#include <torch/csrc/jit/serialization/mobile_bytecode_generated.h> // NOLINT
#endif
namespace torch::jit {
using flatbuffers::FlatBufferBuilder;
using mobile::serialization::CreateArg;
using mobile::serialization::CreateDebugInfo;
using mobile::serialization::CreateDict;
using mobile::serialization::CreateFunctionDirect;
using mobile::serialization::CreateIValue;
using mobile::serialization::CreateList;
using mobile::serialization::CreateModule;
using mobile::serialization::CreateObject;
using mobile::serialization::CreateOperator;
using mobile::serialization::CreateTensorMetadataDirect;
using mobile::serialization::CreateTupleDirect;
namespace {
// TODO: remove once caffe2::kProducedBytecodeVersion is >= 9 and flatbuffer is
// launched.
constexpr uint32_t kMinVersion = 9;
// We will store IValue NONE in index 0 in flatbuffer.
constexpr int kNoneIndex = 0;
static TypePtr realType(TypePtr type) {
if (auto dyn = type->castRaw<c10::DynamicType>()) {
return dyn->fallback();
} else {
return type;
}
}
auto print_type(const c10::Type& t) -> std::optional<std::string> {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return namedType->name().value().qualifiedName();
}
if (auto dyn = t.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str();
}
return std::nullopt;
}
class FlatbufferSerializer {
public:
FlatbufferSerializer() = default;
flatbuffers::DetachedBuffer serializeModule(
const mobile::Module& module,
bool include_tensor_data_in_flatbuffer,
const ExtraFilesMap& extra_files = ExtraFilesMap(),
const ExtraFilesMap& jit_sources = ExtraFilesMap(),
const std::vector<IValue>& jit_constants = {});
private:
template <typename It>
std::vector<uint32_t> storeIValuesAndGetIndexes(
flatbuffers::FlatBufferBuilder& fbb,
It begin,
It end) {
std::vector<uint32_t> indexes;
for (; begin != end; ++begin) {
indexes.push_back(storeIValueAndGetIndex(fbb, *begin));
}
return indexes;
}
flatbuffers::Offset<mobile::serialization::Tuple> tupleToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& tuple);
flatbuffers::Offset<mobile::serialization::List> listToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list);
flatbuffers::Offset<mobile::serialization::Dict> dictToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list);
flatbuffers::Offset<mobile::serialization::Object> objectToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<mobile::serialization::TensorMetadata> tensorToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<mobile::serialization::Function> functionToFB(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& func);
flatbuffers::Offset<mobile::serialization::IValue> iValueToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<jit::mobile::serialization::Schema> CreateFBSchema(
flatbuffers::FlatBufferBuilder& fbb,
const std::vector<Argument>& args,
const std::vector<Argument>& returns,
const c10::TypePrinter& type_printer);
flatbuffers::Offset<mobile::serialization::ObjectType> classTypeToFB(
flatbuffers::FlatBufferBuilder& fbb,
const ClassTypePtr& class_ptr);
uint32_t storeIValueAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
uint32_t storeFunctionAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& function);
uint32_t storeClassTypeAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const ClassTypePtr& class_type);
flatbuffers::Offset<flatbuffers::Vector<
flatbuffers::Offset<mobile::serialization::ExtraFile>>>
storeExtraFilesAndGetOffset(
FlatBufferBuilder& fbb,
const ExtraFilesMap& extra_files);
uint32_t insertIValue(
flatbuffers::Offset<mobile::serialization::IValue> ivalue) {
uint32_t size = ivalue_offsets_.size();
ivalue_offsets_.push_back(ivalue);
return size;
}
std::vector<at::Tensor> tensor_data_;
std::unordered_map<const void*, uint32_t> memoized_storage_map_;
std::vector<flatbuffers::Offset<mobile::serialization::IValue>>
ivalue_offsets_;
std::vector<flatbuffers::Offset<mobile::serialization::ObjectType>>
obj_types_offset_;
// qualified name to serialized class, type or function
std::unordered_map<std::string, uint32_t> qn_to_serialized_values_;
// cache of some ivalues
struct IValueHash {
size_t operator()(const IValue& val) const {
return IValue::hash(val);
}
};
struct IValueEqual {
// Copy of this
// https://www.internalfb.com/code/aros/[3b875bce7ffa2adacdcea9b3e0cb6d304737a193]/xros/third-party/caffe2/caffe2/aten/src/ATen/core/ivalue.cpp?lines=266
// but without relying on aten::nonzero operator being present in the
// binary.
bool operator()(const IValue& lhs, const IValue& rhs) const {
// The only case we don't return bool is for tensor comparison. Lets do
// pointer comparison here.
if (lhs.isTensor() || rhs.isTensor()) {
if (lhs.isTensor() && rhs.isTensor()) {
return (&lhs.toTensor()) == (&rhs.toTensor());
}
return false;
}
IValue eq = lhs.equals(rhs);
if (eq.isBool()) {
return eq.toBool();
}
return false;
}
};
std::unordered_map<IValue, uint32_t, IValueHash, IValueEqual> cached_ivalues_;
const mobile::CompilationUnit* mcu_ = nullptr;
};
flatbuffers::Offset<jit::mobile::serialization::Schema> FlatbufferSerializer::
CreateFBSchema(
flatbuffers::FlatBufferBuilder& fbb,
const std::vector<Argument>& args,
const std::vector<Argument>& returns,
const c10::TypePrinter& type_printer) {
std::vector<flatbuffers::Offset<jit::mobile::serialization::Arg>> arg_vec;
arg_vec.reserve(args.size());
std::vector<flatbuffers::Offset<jit::mobile::serialization::Arg>> return_vec;
return_vec.reserve(returns.size());
for (const auto& arg : args) {
auto index = storeIValueAndGetIndex(fbb, arg.default_value());
arg_vec.emplace_back(CreateArg(
fbb,
fbb.CreateSharedString(arg.name()),
fbb.CreateSharedString(
realType(arg.type())->annotation_str(type_printer)),
index));
}
for (const auto& ret : returns) {
auto index = storeIValueAndGetIndex(fbb, ret.default_value());
return_vec.emplace_back(CreateArg(
fbb,
fbb.CreateSharedString(ret.name()),
fbb.CreateSharedString(
realType(ret.type())->annotation_str(type_printer)),
index));
}
return CreateSchema(
fbb, fbb.CreateVector(arg_vec), fbb.CreateVector(return_vec));
}
flatbuffers::Offset<mobile::serialization::Function> FlatbufferSerializer::
functionToFB(
FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& func) {
const auto& code = func.get_code();
// instructions
std::vector<mobile::serialization::Instruction> instruction_vector;
instruction_vector.reserve(code.instructions_.size());
for (const auto& inst : code.instructions_) {
instruction_vector.emplace_back(inst.op, inst.N, inst.X);
}
// operators
std::vector<flatbuffers::Offset<mobile::serialization::Operator>>
operator_vector;
operator_vector.reserve(code.op_names_.size());
for (const auto i : c10::irange(code.op_names_.size())) {
const auto& opname = code.op_names_[i];
const int op_size = code.operator_input_sizes_[i];
operator_vector.push_back(CreateOperator(
fbb,
fbb.CreateSharedString(opname.name),
fbb.CreateSharedString(opname.overload_name),
op_size));
}
const auto& constants = code.constants_;
std::vector<uint32_t> constant_indexes;
constant_indexes.reserve(constants.size());
for (const auto& constant : constants) {
constant_indexes.push_back(storeIValueAndGetIndex(fbb, constant));
}
// types
static const std::string torch_prefix("__torch__");
static const std::string class_prefix("__torch__.torch.classes");
std::vector<flatbuffers::Offset<flatbuffers::String>> type_offsets;
for (const TypePtr& t : code.types_) {
auto type_str = realType(t)->annotation_str();
if (type_str.find(torch_prefix) == 0) {
TORCH_CHECK(
type_str.find(class_prefix) == 0,
"__torch__ types other than custom c++ classes (__torch__.torch.classes)"
"are not supported in lite interpreter. ",
"Workaround: instead of using arbitrary class type (class Foo()), ",
"define a pytorch class (class Foo(torch.nn.Module)).");
}
type_offsets.push_back(fbb.CreateSharedString(type_str));
}
// since the register location is embedded into the bytecode, pass the
// register size
auto register_size = static_cast<int>(code.register_size_);
// schema
auto type_printer = [&](const c10::Type& t) -> std::optional<std::string> {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return namedType->name().value().qualifiedName();
}
if (auto dyn = t.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str();
}
return std::nullopt;
};
flatbuffers::Offset<mobile::serialization::Schema> schema_offset = 0;
uint32_t class_index = 0;
if (func.hasSchema()) {
const auto& schema = func.getSchema();
TORCH_CHECK(
schema.overload_name().empty(), // @TODO: is this check correct?
"Overloads are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_vararg(),
"Python *args are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_varret(),
"A variable number of return values is not supported in mobile modules.");
schema_offset =
CreateFBSchema(fbb, schema.arguments(), schema.returns(), type_printer);
auto classtype = schema.arguments()[0].type()->cast<ClassType>();
class_index = storeClassTypeAndGetIndex(fbb, classtype);
}
auto debug_info_offset =
CreateDebugInfo(fbb, fbb.CreateVector(code.debug_handles_));
auto function_offset = CreateFunctionDirect(
fbb,
qn.c_str(),
&instruction_vector,
&operator_vector,
&constant_indexes,
&type_offsets,
register_size,
schema_offset,
debug_info_offset,
class_index);
return function_offset;
}
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<mobile::serialization::ExtraFile>>>
FlatbufferSerializer::storeExtraFilesAndGetOffset(
FlatBufferBuilder& fbb,
const ExtraFilesMap& extra_files) {
std::vector<flatbuffers::Offset<mobile::serialization::ExtraFile>>
extra_file_offsets;
for (const auto& extra_file : extra_files) {
flatbuffers::Offset<mobile::serialization::ExtraFile> extra_file_offset =
mobile::serialization::CreateExtraFile(
fbb,
fbb.CreateSharedString(extra_file.first),
fbb.CreateString(extra_file.second));
extra_file_offsets.emplace_back(extra_file_offset);
}
return fbb.CreateVector(extra_file_offsets);
}
flatbuffers::DetachedBuffer FlatbufferSerializer::serializeModule(
const mobile::Module& module,
bool include_tensor_data_in_flatbuffer,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
FlatBufferBuilder fbb;
mcu_ = &module.compilation_unit();
// first element is None.
insertIValue(CreateIValue(fbb, mobile::serialization::IValueUnion::NONE, 0));
auto methods = module.get_methods();
std::vector<uint32_t> functions_index;
functions_index.reserve(methods.size());
for (const auto& method : methods) {
auto func_offset = storeFunctionAndGetIndex(
fbb, method.function().qualname().qualifiedName(), method.function());
functions_index.push_back(func_offset);
}
auto functions_offset = fbb.CreateVector(functions_index);
uint32_t ivalue_index = storeIValueAndGetIndex(fbb, module._ivalue());
flatbuffers::Offset<flatbuffers::Vector<
flatbuffers::Offset<mobile::serialization::StorageData>>>
storage_data_offset = 0;
auto extra_files_offset = storeExtraFilesAndGetOffset(fbb, extra_files);
auto jit_source_offset = storeExtraFilesAndGetOffset(fbb, jit_sources);
std::vector<uint32_t> jit_constants_indexes;
jit_constants_indexes.reserve(jit_constants.size());
const uint32_t mobile_ivalue_size = ivalue_offsets_.size();
for (const auto& ival : jit_constants) {
jit_constants_indexes.emplace_back(storeIValueAndGetIndex(fbb, ival));
}
const uint32_t operator_version =
static_cast<uint32_t>(module.min_operator_version());
uint32_t bytecode_version = static_cast<uint32_t>(module.bytecode_version());
if (bytecode_version < kMinVersion) {
bytecode_version = kMinVersion;
}
// NOTE: saving of storage has to be the last thing to do.
if (include_tensor_data_in_flatbuffer) {
std::vector<flatbuffers::Offset<mobile::serialization::StorageData>>
storage_data;
for (auto td : tensor_data_) {
if (td.storage().device_type() != DeviceType::CPU) {
td = at::empty({0}, td.options())
.set_(
td.storage(),
/* storage_offset = */ 0,
/* size = */
{static_cast<int64_t>(
td.storage().nbytes() / td.element_size())},
/* stride = */ {1})
.cpu();
}
fbb.ForceVectorAlignment(
td.storage().nbytes(), sizeof(uint8_t), FLATBUFFERS_MAX_ALIGNMENT);
auto storage_offset = mobile::serialization::CreateStorageData(
fbb,
fbb.CreateVector(
reinterpret_cast<const uint8_t*>(td.storage().data()),
td.storage().nbytes()));
storage_data.push_back(storage_offset);
}
storage_data_offset = fbb.CreateVector(storage_data);
}
auto mod = CreateModule(
fbb,
/*bytecode_version=*/bytecode_version,
extra_files_offset, /* extra_files */
functions_offset,
ivalue_index,
fbb.CreateVector(ivalue_offsets_),
static_cast<int32_t>(tensor_data_.size()),
storage_data_offset,
fbb.CreateVector(obj_types_offset_),
jit_source_offset,
fbb.CreateVector(jit_constants_indexes),
operator_version,
mobile_ivalue_size);
FinishModuleBuffer(fbb, mod);
return fbb.Release();
}
flatbuffers::Offset<mobile::serialization::Tuple> FlatbufferSerializer::
tupleToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& tuple) {
const auto& elements = tuple.toTuple()->elements();
std::vector<uint32_t> items =
storeIValuesAndGetIndexes(fbb, elements.begin(), elements.end());
return CreateTupleDirect(fbb, &items);
}
flatbuffers::Offset<mobile::serialization::List> FlatbufferSerializer::listToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list) {
const auto& elements = list.toList();
std::vector<uint32_t> items =
storeIValuesAndGetIndexes(fbb, elements.begin(), elements.end());
return CreateList(
fbb,
fbb.CreateVector(items),
fbb.CreateSharedString(
realType(list.type<c10::Type>())->annotation_str(print_type)));
}
flatbuffers::Offset<mobile::serialization::Dict> FlatbufferSerializer::dictToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
const auto& dict = ivalue.toGenericDict();
std::vector<uint32_t> keys;
std::vector<uint32_t> values;
keys.reserve(dict.size());
values.reserve(dict.size());
for (const auto& entry : dict) {
auto key_index = storeIValueAndGetIndex(fbb, entry.key());
keys.push_back(key_index);
auto value_index = storeIValueAndGetIndex(fbb, entry.value());
values.push_back(value_index);
}
return CreateDict(
fbb,
fbb.CreateVector(keys),
fbb.CreateVector(values),
fbb.CreateSharedString(
realType(ivalue.type<c10::Type>())->annotation_str(print_type)));
}
flatbuffers::Offset<mobile::serialization::ObjectType> FlatbufferSerializer::
classTypeToFB(FlatBufferBuilder& fbb, const ClassTypePtr& class_ptr) {
mobile::serialization::TypeType typetype =
mobile::serialization::TypeType::UNSET;
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<flatbuffers::String>>>
names_offset = 0;
c10::QualifiedName setstate_name(*class_ptr->name(), "__setstate__");
c10::QualifiedName getstate_name(*class_ptr->name(), "__getstate__");
const mobile::Function* setstate = mcu_->find_function(setstate_name);
const mobile::Function* getstate = mcu_->find_function(getstate_name);
if (setstate != nullptr && getstate != nullptr) {
typetype = mobile::serialization::TypeType::CLASS_WITH_SETSTATE;
} else if (
class_ptr->findMethod("__setstate__") &&
class_ptr->findMethod("__getstate__")) {
typetype = mobile::serialization::TypeType::CUSTOM_CLASS;
} else {
size_t num_attr = class_ptr->numAttributes();
std::vector<flatbuffers::Offset<flatbuffers::String>> names;
names.reserve(num_attr);
for (size_t i = 0; i < num_attr; ++i) {
names.push_back(fbb.CreateSharedString(class_ptr->getAttributeName(i)));
}
names_offset = fbb.CreateVector(names);
typetype = mobile::serialization::TypeType::CLASS_WITH_FIELD;
}
auto name_offset = fbb.CreateString(class_ptr->name()->qualifiedName());
return CreateObjectType(fbb, name_offset, typetype, names_offset);
}
uint32_t FlatbufferSerializer::storeFunctionAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& function) {
auto iter = qn_to_serialized_values_.find(qn);
if (iter != qn_to_serialized_values_.end()) {
return iter->second;
}
auto offset = CreateIValue(
fbb,
mobile::serialization::IValueUnion::Function,
functionToFB(fbb, qn, function).Union());
uint32_t index = insertIValue(offset);
qn_to_serialized_values_[qn] = index;
return index;
}
uint32_t FlatbufferSerializer::storeClassTypeAndGetIndex(
FlatBufferBuilder& fbb,
const ClassTypePtr& class_ptr) {
const auto& type_str = class_ptr->name()->qualifiedName();
auto iter = qn_to_serialized_values_.find(type_str);
if (iter != qn_to_serialized_values_.end()) {
return iter->second;
}
auto offset = classTypeToFB(fbb, class_ptr);
uint32_t res = obj_types_offset_.size();
obj_types_offset_.push_back(offset);
qn_to_serialized_values_[type_str] = res;
return res;
}
flatbuffers::Offset<mobile::serialization::Object> FlatbufferSerializer::
objectToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& ivalue) {
auto obj = ivalue.toObject();
auto type = obj->type();
// rename type?
// check getstate
// save state as ivalue
flatbuffers::Offset<flatbuffers::Vector<uint32_t>> attrs = 0;
uint32_t state_index = 0;
uint32_t setstate_func_index = 0;
const auto qn = type->name()->qualifiedName() + ".__setstate__";
auto getstate = type->findMethod("__getstate__");
auto setstate = type->findMethod("__setstate__");
if (getstate && setstate) {
auto state = (*getstate)({obj});
state_index = storeIValueAndGetIndex(fbb, state);
auto func_index = qn_to_serialized_values_.find(qn);
if (func_index != qn_to_serialized_values_.end()) {
setstate_func_index = func_index->second;
}
} else {
size_t num_attr = type->numAttributes();
std::vector<uint32_t> tuple_index;
tuple_index.reserve(num_attr);
for (size_t i = 0; i < num_attr; ++i) {
tuple_index.push_back(storeIValueAndGetIndex(fbb, obj->getSlot(i)));
}
attrs = fbb.CreateVector(tuple_index);
}
uint32_t type_index = storeClassTypeAndGetIndex(fbb, type);
return CreateObject(fbb, type_index, state_index, attrs, setstate_func_index);
}
flatbuffers::Offset<mobile::serialization::TensorMetadata> FlatbufferSerializer::
FlatbufferSerializer::tensorToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
auto& tensor = ivalue.toTensor();
bool quantized = tensor.is_quantized();
const at::Storage& storage = tensor.storage();
flatbuffers::Offset<mobile::serialization::QuantizedSchema> qschema_offset =
0;
if (quantized) {
double scale = 0;
int64_t zero_point = 0;
flatbuffers::Offset<mobile::serialization::TensorMetadata> scales = 0;
flatbuffers::Offset<mobile::serialization::TensorMetadata> zero_points = 0;
int64_t axis = 0;
switch (tensor.qscheme()) {
case at::kPerTensorAffine:
scale = tensor.q_scale();
zero_point = tensor.q_zero_point();
break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
scales = tensorToFB(fbb, tensor.q_per_channel_scales());
zero_points = tensorToFB(fbb, tensor.q_per_channel_zero_points());
axis = tensor.q_per_channel_axis();
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(tensor.qscheme()));
break;
}
qschema_offset = mobile::serialization::CreateQuantizedSchema(
fbb,
static_cast<int8_t>(tensor.qscheme()),
scale,
static_cast<int32_t>(zero_point),
scales,
zero_points,
static_cast<int32_t>(axis));
}
void* addr = storage.unsafeGetStorageImpl();
uint32_t storage_index = 0;
auto it = memoized_storage_map_.find(addr);
if (it != memoized_storage_map_.end()) {
storage_index = it->second;
} else {
storage_index = tensor_data_.size();
memoized_storage_map_[addr] = storage_index;
tensor_data_.push_back(tensor);
}
std::vector<int> sizes{tensor.sizes().begin(), tensor.sizes().end()};
std::vector<int> strides{tensor.strides().begin(), tensor.strides().end()};
return CreateTensorMetadataDirect(
fbb,
/* storage_location_index */ storage_index,
/* scalar_type */ static_cast<int8_t>(tensor.scalar_type()),
/* int32_t storage_offset */
static_cast<int32_t>(tensor.storage_offset()),
/* sizes */ &sizes,
/* strides */ &strides,
/* bool requires_grad */ tensor.requires_grad(),
/* qschema */ qschema_offset);
}
uint32_t FlatbufferSerializer::storeIValueAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
if (ivalue.isNone()) {
return kNoneIndex;
}
try {
auto iter = cached_ivalues_.find(ivalue);
if (iter != cached_ivalues_.end()) {
return iter->second;
}
// NOLINTNEXTLINE(bugprone-empty-catch)
} catch (...) {
// Threw if ivalue is not hashable or
// if ivalue is don't have proper operator==
// we don't care catchall because either case we want to skip hashing
}
auto offset = iValueToFB(fbb, ivalue);
uint32_t index = insertIValue(offset);
try {
cached_ivalues_[ivalue] = index;
// NOLINTNEXTLINE(bugprone-empty-catch)
} catch (...) {
// Threw if ivalue is not hashable or
// if ivalue is don't have proper operator==
// we don't care catchall because either case we want to skip hashing
}
return index;
}
flatbuffers::Offset<mobile::serialization::IValue> FlatbufferSerializer::
iValueToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& ivalue) {
using mobile::serialization::IValueUnion;
IValueUnion ivalue_type = IValueUnion::NONE;
flatbuffers::Offset<void> offset = 0;
if (ivalue.isTensor()) {
ivalue_type = IValueUnion::TensorMetadata;
offset = tensorToFB(fbb, ivalue).Union();
} else if (ivalue.isTuple()) {
ivalue_type = IValueUnion::Tuple;
offset = tupleToFB(fbb, ivalue).Union();
} else if (ivalue.isDouble()) {
ivalue_type = IValueUnion::Double;
offset = fbb.CreateStruct(mobile::serialization::Double(ivalue.toDouble()))
.Union();
} else if (ivalue.isComplexDouble()) {
auto comp = ivalue.toComplexDouble();
ivalue_type = IValueUnion::ComplexDouble;
offset = fbb.CreateStruct(mobile::serialization::ComplexDouble(
comp.real(), comp.imag()))
.Union();
} else if (ivalue.isInt()) {
ivalue_type = IValueUnion::Int;
offset =
fbb.CreateStruct(mobile::serialization::Int(ivalue.toInt())).Union();
} else if (ivalue.isBool()) {
ivalue_type = IValueUnion::Bool;
offset =
fbb.CreateStruct(mobile::serialization::Bool(ivalue.toBool())).Union();
} else if (ivalue.isString()) {
ivalue_type = IValueUnion::String;
offset = mobile::serialization::CreateString(
fbb, fbb.CreateSharedString(ivalue.toStringRef()))
.Union();
} else if (ivalue.isGenericDict()) {
ivalue_type = IValueUnion::Dict;
offset = dictToFB(fbb, ivalue).Union();
} else if (ivalue.isNone()) {
ivalue_type = IValueUnion::NONE;
offset = 0;
} else if (ivalue.isIntList()) {
ivalue_type = IValueUnion::IntList;
offset = mobile::serialization::CreateIntList(
fbb, fbb.CreateVector(ivalue.toIntVector()))
.Union();
} else if (ivalue.isDoubleList()) {
ivalue_type = IValueUnion::DoubleList;
offset = mobile::serialization::CreateDoubleList(
fbb, fbb.CreateVector(ivalue.toDoubleVector()))
.Union();
} else if (ivalue.isBoolList()) {
ivalue_type = IValueUnion::BoolList;
auto boollist = ivalue.toBoolList();
std::vector<uint8_t> bool_vec(boollist.begin(), boollist.end());
offset =
mobile::serialization::CreateBoolListDirect(fbb, &bool_vec).Union();
} else if (ivalue.isList()) {
ivalue_type = IValueUnion::List;
offset = listToFB(fbb, ivalue).Union();
} else if (ivalue.isObject()) {
ivalue_type = IValueUnion::Object;
offset = objectToFB(fbb, ivalue).Union();
} else if (ivalue.isDevice()) {
ivalue_type = IValueUnion::Device;
offset = mobile::serialization::CreateDevice(
fbb, fbb.CreateSharedString(ivalue.toDevice().str()))
.Union();
} else if (ivalue.isEnum()) {
const auto& enum_holder = ivalue.toEnumHolder();
const auto& qualified_class_name =
enum_holder->type()->qualifiedClassName();
uint32_t ival_pos = storeIValueAndGetIndex(fbb, enum_holder->value());
ivalue_type = IValueUnion::EnumValue;
offset = mobile::serialization::CreateEnumValue(
fbb,
fbb.CreateSharedString(qualified_class_name.qualifiedName()),
ival_pos)
.Union();
} else {
TORCH_CHECK(
false, "Invalid IValue type for serialization: ", ivalue.tagKind());
}
return CreateIValue(fbb, ivalue_type, offset);
}
} // namespace
void save_mobile_module(
const mobile::Module& module,
const std::string& filename,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
auto buffer = save_mobile_module_to_bytes(
module, extra_files, jit_sources, jit_constants);
std::fstream ofile(filename, std::ios::binary | std::ios::out);
ofile.write(
reinterpret_cast<char*>(buffer->data()),
static_cast<std::streamsize>(buffer->size()));
ofile.close();
}
/// Deletes a DetachedBuffer, along with the internal
/// flatbuffers::DetachedBuffer if present. Used as a custom deleter for
/// std::unique_ptr; see UniqueDetachedBuffer and make_unique_detached_buffer.
void DetachedBuffer::destroy(DetachedBuffer* buf) {
// May be null.
delete static_cast<flatbuffers::DetachedBuffer*>(buf->data_owner_);
delete buf;
}
/// Provides access to DetachedBuffer::destroy().
struct DetachedBufferFriend {
/// Returns a UniqueDetachedBuffer that wraps the provided DetachedBuffer.
static DetachedBuffer::UniqueDetachedBuffer make_unique_detached_buffer(
DetachedBuffer* buf) {
return DetachedBuffer::UniqueDetachedBuffer(buf, DetachedBuffer::destroy);
}
};
DetachedBuffer::UniqueDetachedBuffer save_mobile_module_to_bytes(
const mobile::Module& module,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
FlatbufferSerializer fb_serializer;
flatbuffers::DetachedBuffer buf = fb_serializer.serializeModule(
module,
/*include_tensor_data_in_flatbuffer=*/true,
extra_files,
jit_sources,
jit_constants);
flatbuffers::DetachedBuffer* buf_ptr =
new flatbuffers::DetachedBuffer(std::move(buf));
DetachedBuffer* ret =
new DetachedBuffer(buf_ptr->data(), buf_ptr->size(), buf_ptr);
return DetachedBufferFriend::make_unique_detached_buffer(ret);
}
void save_mobile_module_to_func(
const mobile::Module& module,
const std::function<size_t(const void*, size_t)>& writer_func) {
auto buffer = save_mobile_module_to_bytes(module);
writer_func(buffer->data(), buffer->size());
}
bool register_flatbuffer_serializer() {
return true;
}
} // namespace torch::jit