mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157637 Approved by: https://github.com/yewentao256, https://github.com/albanD ghstack dependencies: #156605
393 lines
12 KiB
C++
393 lines
12 KiB
C++
#include <test/cpp/jit/test_utils.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <c10/core/TensorOptions.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/import_data.h>
|
|
#include <torch/csrc/jit/mobile/module.h>
|
|
#include <torch/csrc/jit/mobile/train/export_data.h>
|
|
#include <torch/csrc/jit/mobile/train/optim/sgd.h>
|
|
#include <torch/csrc/jit/mobile/train/random.h>
|
|
#include <torch/csrc/jit/mobile/train/sequential.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/data/dataloader.h>
|
|
#include <torch/torch.h>
|
|
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
TEST(LiteTrainerTest, Params) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({1}, at::requires_grad()), false);
|
|
m.define(R"(
|
|
def forward(self, x):
|
|
b = 1.0
|
|
return self.foo * x + b
|
|
)");
|
|
double learning_rate = 0.1, momentum = 0.1;
|
|
int n_epoc = 10;
|
|
// init: y = x + 1;
|
|
// target: y = 2 x + 1
|
|
std::vector<std::pair<Tensor, Tensor>> trainData{
|
|
{1 * torch::ones({1}), 3 * torch::ones({1})},
|
|
};
|
|
// Reference: Full jit
|
|
std::stringstream ms;
|
|
m.save(ms);
|
|
auto mm = load(ms);
|
|
// mm.train();
|
|
std::vector<::at::Tensor> parameters;
|
|
for (auto parameter : mm.parameters()) {
|
|
parameters.emplace_back(parameter);
|
|
}
|
|
::torch::optim::SGD optimizer(
|
|
parameters, ::torch::optim::SGDOptions(learning_rate).momentum(momentum));
|
|
for (int epoc = 0; epoc < n_epoc; ++epoc) {
|
|
for (auto& data : trainData) {
|
|
auto source = data.first, targets = data.second;
|
|
optimizer.zero_grad();
|
|
std::vector<IValue> train_inputs{source};
|
|
auto output = mm.forward(train_inputs).toTensor();
|
|
auto loss = ::torch::l1_loss(output, targets);
|
|
loss.backward();
|
|
optimizer.step();
|
|
}
|
|
}
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
std::vector<::at::Tensor> bc_parameters = bc.parameters();
|
|
::torch::optim::SGD bc_optimizer(
|
|
bc_parameters,
|
|
::torch::optim::SGDOptions(learning_rate).momentum(momentum));
|
|
for (int epoc = 0; epoc < n_epoc; ++epoc) {
|
|
for (auto& data : trainData) {
|
|
auto source = data.first, targets = data.second;
|
|
bc_optimizer.zero_grad();
|
|
std::vector<IValue> train_inputs{source};
|
|
auto output = bc.forward(train_inputs).toTensor();
|
|
auto loss = ::torch::l1_loss(output, targets);
|
|
loss.backward();
|
|
bc_optimizer.step();
|
|
}
|
|
}
|
|
AT_ASSERT(parameters[0].item<float>() == bc_parameters[0].item<float>());
|
|
}
|
|
|
|
// TODO Re-enable these tests after parameters are correctly loaded on mobile
|
|
/*
|
|
TEST(MobileTest, NamedParameters) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add_it(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
Module child("m2");
|
|
child.register_parameter("foo", 4 * torch::ones({}), false);
|
|
child.register_parameter("bar", 4 * torch::ones({}), false);
|
|
m.register_module("child1", child);
|
|
m.register_module("child2", child.clone());
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
|
|
auto full_params = m.named_parameters();
|
|
auto mobile_params = bc.named_parameters();
|
|
AT_ASSERT(full_params.size() == mobile_params.size());
|
|
for (const auto& e : full_params) {
|
|
AT_ASSERT(e.value.item().toInt() ==
|
|
mobile_params[e.name].item().toInt());
|
|
}
|
|
}
|
|
|
|
TEST(MobileTest, SaveLoadParameters) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def add_it(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
Module child("m2");
|
|
child.register_parameter("foo", 4 * torch::ones({}), false);
|
|
child.register_parameter("bar", 3 * torch::ones({}), false);
|
|
m.register_module("child1", child);
|
|
m.register_module("child2", child.clone());
|
|
auto full_params = m.named_parameters();
|
|
std::stringstream ss;
|
|
std::stringstream ss_data;
|
|
m._save_for_mobile(ss);
|
|
|
|
// load mobile module, save mobile named parameters
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
_save_parameters(bc.named_parameters(), ss_data);
|
|
|
|
// load back the named parameters, compare to full-jit Module's
|
|
auto mobile_params = _load_parameters(ss_data);
|
|
AT_ASSERT(full_params.size() == mobile_params.size());
|
|
for (const auto& e : full_params) {
|
|
AT_ASSERT(e.value.item<int>() == mobile_params[e.name].item<int>());
|
|
}
|
|
}
|
|
*/
|
|
|
|
TEST(MobileTest, SaveLoadParametersEmpty) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def add_it(self, x):
|
|
b = 4
|
|
return x + b
|
|
)");
|
|
Module child("m2");
|
|
m.register_module("child1", child);
|
|
m.register_module("child2", child.clone());
|
|
std::stringstream ss;
|
|
std::stringstream ss_data;
|
|
m._save_for_mobile(ss);
|
|
|
|
// load mobile module, save mobile named parameters
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
_save_parameters(bc.named_parameters(), ss_data);
|
|
|
|
// load back the named parameters, test is empty
|
|
auto mobile_params = _load_parameters(ss_data);
|
|
AT_ASSERT(mobile_params.size() == 0);
|
|
}
|
|
|
|
TEST(MobileTest, SaveParametersDefaultsToZip) {
|
|
// Save some empty parameters.
|
|
std::map<std::string, at::Tensor> empty_parameters;
|
|
std::stringstream ss_data;
|
|
_save_parameters(empty_parameters, ss_data);
|
|
|
|
// Verify that parameters were serialized to a ZIP container.
|
|
EXPECT_GE(ss_data.str().size(), 4);
|
|
EXPECT_EQ(ss_data.str()[0], 'P');
|
|
EXPECT_EQ(ss_data.str()[1], 'K');
|
|
EXPECT_EQ(ss_data.str()[2], '\x03');
|
|
EXPECT_EQ(ss_data.str()[3], '\x04');
|
|
}
|
|
|
|
TEST(MobileTest, SaveParametersCanUseFlatbuffer) {
|
|
// Save some empty parameters using flatbuffer.
|
|
std::map<std::string, at::Tensor> empty_parameters;
|
|
std::stringstream ss_data;
|
|
_save_parameters(empty_parameters, ss_data, /*use_flatbuffer=*/true);
|
|
|
|
// Verify that parameters were serialized to a flatbuffer. The flatbuffer
|
|
// magic bytes should be at offsets 4..7. The first four bytes contain an
|
|
// offset to the actual flatbuffer data.
|
|
EXPECT_GE(ss_data.str().size(), 8);
|
|
EXPECT_EQ(ss_data.str()[4], 'P');
|
|
EXPECT_EQ(ss_data.str()[5], 'T');
|
|
EXPECT_EQ(ss_data.str()[6], 'M');
|
|
EXPECT_EQ(ss_data.str()[7], 'F');
|
|
}
|
|
|
|
TEST(MobileTest, SaveLoadParametersUsingFlatbuffers) {
|
|
// Create some simple parameters to save.
|
|
std::map<std::string, at::Tensor> input_params;
|
|
input_params["four_by_ones"] = 4 * torch::ones({});
|
|
input_params["three_by_ones"] = 3 * torch::ones({});
|
|
|
|
// Serialize them using flatbuffers.
|
|
std::stringstream data;
|
|
_save_parameters(input_params, data, /*use_flatbuffer=*/true);
|
|
|
|
// The flatbuffer magic bytes should be at offsets 4..7.
|
|
EXPECT_EQ(data.str()[4], 'P');
|
|
EXPECT_EQ(data.str()[5], 'T');
|
|
EXPECT_EQ(data.str()[6], 'M');
|
|
EXPECT_EQ(data.str()[7], 'F');
|
|
|
|
// Read them back and check that they survived the trip.
|
|
auto output_params = _load_parameters(data);
|
|
EXPECT_EQ(output_params.size(), 2);
|
|
{
|
|
auto four_by_ones = 4 * torch::ones({});
|
|
EXPECT_EQ(
|
|
output_params["four_by_ones"].item<int>(), four_by_ones.item<int>());
|
|
}
|
|
{
|
|
auto three_by_ones = 3 * torch::ones({});
|
|
EXPECT_EQ(
|
|
output_params["three_by_ones"].item<int>(), three_by_ones.item<int>());
|
|
}
|
|
}
|
|
|
|
TEST(MobileTest, LoadParametersUnexpectedFormatShouldThrow) {
|
|
// Manually create some data that doesn't look like a ZIP or Flatbuffer file.
|
|
// Make sure it's longer than 8 bytes, since getFileFormat() needs that much
|
|
// data to detect the type.
|
|
std::stringstream bad_data;
|
|
bad_data << "abcd"
|
|
<< "efgh"
|
|
<< "ijkl";
|
|
|
|
// Loading parameters from it should throw an exception.
|
|
EXPECT_ANY_THROW(_load_parameters(bad_data));
|
|
}
|
|
|
|
TEST(MobileTest, LoadParametersEmptyDataShouldThrow) {
|
|
// Loading parameters from an empty data stream should throw an exception.
|
|
std::stringstream empty;
|
|
EXPECT_ANY_THROW(_load_parameters(empty));
|
|
}
|
|
|
|
TEST(MobileTest, LoadParametersMalformedFlatbuffer) {
|
|
// Manually create some data with Flatbuffer header.
|
|
std::stringstream bad_data;
|
|
bad_data << "PK\x03\x04PTMF\x00\x00"
|
|
<< "*}NV\xb3\xfa\xdf\x00pa";
|
|
|
|
// Loading parameters from it should throw an exception.
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
_load_parameters(bad_data), "Malformed Flatbuffer module");
|
|
}
|
|
|
|
TEST(LiteTrainerTest, SGD) {
|
|
Module m("m");
|
|
m.register_parameter("foo", torch::ones({1}, at::requires_grad()), false);
|
|
m.define(R"(
|
|
def forward(self, x):
|
|
b = 1.0
|
|
return self.foo * x + b
|
|
)");
|
|
double learning_rate = 0.1, momentum = 0.1;
|
|
int n_epoc = 10;
|
|
// init: y = x + 1;
|
|
// target: y = 2 x + 1
|
|
std::vector<std::pair<Tensor, Tensor>> trainData{
|
|
{1 * torch::ones({1}), 3 * torch::ones({1})},
|
|
};
|
|
// Reference: Full jit and torch::optim::SGD
|
|
std::stringstream ms;
|
|
m.save(ms);
|
|
auto mm = load(ms);
|
|
std::vector<::at::Tensor> parameters;
|
|
for (auto parameter : mm.parameters()) {
|
|
parameters.emplace_back(parameter);
|
|
}
|
|
::torch::optim::SGD optimizer(
|
|
parameters, ::torch::optim::SGDOptions(learning_rate).momentum(momentum));
|
|
for (int epoc = 0; epoc < n_epoc; ++epoc) {
|
|
for (auto& data : trainData) {
|
|
auto source = data.first, targets = data.second;
|
|
optimizer.zero_grad();
|
|
std::vector<IValue> train_inputs{source};
|
|
auto output = mm.forward(train_inputs).toTensor();
|
|
auto loss = ::torch::l1_loss(output, targets);
|
|
loss.backward();
|
|
optimizer.step();
|
|
}
|
|
}
|
|
// Test: lite interpreter and torch::jit::mobile::SGD
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
std::vector<::at::Tensor> bc_parameters = bc.parameters();
|
|
::torch::jit::mobile::SGD bc_optimizer(
|
|
bc_parameters,
|
|
::torch::jit::mobile::SGDOptions(learning_rate).momentum(momentum));
|
|
for (int epoc = 0; epoc < n_epoc; ++epoc) {
|
|
for (auto& data : trainData) {
|
|
auto source = data.first, targets = data.second;
|
|
bc_optimizer.zero_grad();
|
|
std::vector<IValue> train_inputs{source};
|
|
auto output = bc.forward(train_inputs).toTensor();
|
|
auto loss = ::torch::l1_loss(output, targets);
|
|
loss.backward();
|
|
bc_optimizer.step();
|
|
}
|
|
}
|
|
AT_ASSERT(parameters[0].item<float>() == bc_parameters[0].item<float>());
|
|
}
|
|
|
|
namespace {
|
|
struct DummyDataset : torch::data::datasets::Dataset<DummyDataset, int> {
|
|
explicit DummyDataset(size_t size = 100) : size_(size) {}
|
|
|
|
int get(size_t index) override {
|
|
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
|
|
return 1 + index;
|
|
}
|
|
std::optional<size_t> size() const override {
|
|
return size_;
|
|
}
|
|
|
|
size_t size_;
|
|
};
|
|
} // namespace
|
|
|
|
TEST(LiteTrainerTest, SequentialSampler) {
|
|
// test that sampler can be used with dataloader
|
|
const int kBatchSize = 10;
|
|
auto data_loader = torch::data::make_data_loader<mobile::SequentialSampler>(
|
|
DummyDataset(25), kBatchSize);
|
|
int i = 1;
|
|
for (const auto& batch : *data_loader) {
|
|
for (const auto& example : batch) {
|
|
AT_ASSERT(i == example);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(LiteTrainerTest, RandomSamplerReturnsIndicesInCorrectRange) {
|
|
mobile::RandomSampler sampler(10);
|
|
|
|
std::vector<size_t> indices = sampler.next(3).value();
|
|
for (auto i : indices) {
|
|
AT_ASSERT(i < 10);
|
|
}
|
|
|
|
indices = sampler.next(5).value();
|
|
for (auto i : indices) {
|
|
AT_ASSERT(i < 10);
|
|
}
|
|
|
|
indices = sampler.next(2).value();
|
|
for (auto i : indices) {
|
|
AT_ASSERT(i < 10);
|
|
}
|
|
|
|
AT_ASSERT(sampler.next(10).has_value() == false);
|
|
}
|
|
|
|
TEST(LiteTrainerTest, RandomSamplerReturnsLessValuesForLastBatch) {
|
|
mobile::RandomSampler sampler(5);
|
|
AT_ASSERT(sampler.next(3).value().size() == 3);
|
|
AT_ASSERT(sampler.next(100).value().size() == 2);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
}
|
|
|
|
TEST(LiteTrainerTest, RandomSamplerResetsWell) {
|
|
mobile::RandomSampler sampler(5);
|
|
AT_ASSERT(sampler.next(5).value().size() == 5);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
sampler.reset();
|
|
AT_ASSERT(sampler.next(5).value().size() == 5);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
}
|
|
|
|
TEST(LiteTrainerTest, RandomSamplerResetsWithNewSizeWell) {
|
|
mobile::RandomSampler sampler(5);
|
|
AT_ASSERT(sampler.next(5).value().size() == 5);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
sampler.reset(7);
|
|
AT_ASSERT(sampler.next(7).value().size() == 7);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
sampler.reset(3);
|
|
AT_ASSERT(sampler.next(3).value().size() == 3);
|
|
AT_ASSERT(sampler.next(2).has_value() == false);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|