Files
pytorch/torch/distributions/log_normal.py
Edward Yang 173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00

55 lines
1.7 KiB
Python

from torch.distributions import constraints
from torch.distributions.transforms import ExpTransform
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
class LogNormal(TransformedDistribution):
r"""
Creates a log-normal distribution parameterized by
:attr:`loc` and :attr:`scale` where::
X ~ Normal(loc, scale)
Y = exp(X) ~ LogNormal(loc, scale)
Example::
>>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0]))
>>> m.sample() # log-normal distributed with mean=0 and stddev=1
tensor([ 0.1046])
Args:
loc (float or Tensor): mean of log of distribution
scale (float or Tensor): standard deviation of log of the distribution
"""
arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}
support = constraints.positive
has_rsample = True
def __init__(self, loc, scale, validate_args=None):
base_dist = Normal(loc, scale)
super(LogNormal, self).__init__(base_dist, ExpTransform(), validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(LogNormal, _instance)
return super(LogNormal, self).expand(batch_shape, _instance=new)
@property
def loc(self):
return self.base_dist.loc
@property
def scale(self):
return self.base_dist.scale
@property
def mean(self):
return (self.loc + self.scale.pow(2) / 2).exp()
@property
def variance(self):
return (self.scale.pow(2).exp() - 1) * (2 * self.loc + self.scale.pow(2)).exp()
def entropy(self):
return self.base_dist.entropy() + self.loc