mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32479 Run dynamic quantization on mobile (similar to FBGEMM). Currently only implemented on linear operator Test Plan: python test/test_quantized.py TestDynamicQuantizedLinear.test_qlinear Imported from OSS Differential Revision: D19542980 fbshipit-source-id: c9f6e5e8ded4d62ae0f2ed99e478c8307dde22ed
106 lines
3.6 KiB
Python
106 lines
3.6 KiB
Python
r"""Importing this file includes common utility methods for checking quantized
|
|
tensors and modules.
|
|
"""
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
import numpy as np
|
|
import torch
|
|
from contextlib import contextmanager
|
|
|
|
"""Computes the output shape given convolution parameters."""
|
|
def _conv_output_shape(input_size, kernel_size, padding, stride, dilation,
|
|
output_padding=0):
|
|
return np.floor((input_size + 2 * padding - kernel_size - (kernel_size - 1)
|
|
* (dilation - 1)) / stride) + 2 * output_padding + 1
|
|
|
|
# Quantization references
|
|
def _quantize(x, scale, zero_point, qmin=None, qmax=None, dtype=np.uint8):
|
|
"""Quantizes a numpy array."""
|
|
if qmin is None:
|
|
qmin = np.iinfo(dtype).min
|
|
if qmax is None:
|
|
qmax = np.iinfo(dtype).max
|
|
qx = np.round(x / scale + zero_point).astype(np.int64)
|
|
qx = np.clip(qx, qmin, qmax)
|
|
qx = qx.astype(dtype)
|
|
return qx
|
|
|
|
|
|
def _dequantize(qx, scale, zero_point):
|
|
"""Dequantizes a numpy array."""
|
|
x = (qx.astype(np.float) - zero_point) * scale
|
|
return x
|
|
|
|
|
|
def _requantize(x, multiplier, zero_point, qmin=0, qmax=255, qtype=np.uint8):
|
|
"""Requantizes a numpy array, i.e., intermediate int32 or int16 values are
|
|
converted back to given type"""
|
|
qx = (x * multiplier).round() + zero_point
|
|
qx = np.clip(qx, qmin, qmax).astype(qtype)
|
|
return qx
|
|
|
|
def _calculate_dynamic_qparams(X, dtype, reduce_range=False):
|
|
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
|
according to the min and max element of the tensor"""
|
|
if isinstance(X, torch.Tensor):
|
|
X = X.numpy()
|
|
if dtype == torch.qint8:
|
|
if reduce_range:
|
|
qmin, qmax = -64, 63
|
|
else:
|
|
qmin, qmax = -128, 127
|
|
else: # dtype == torch.quint8
|
|
if reduce_range:
|
|
qmin, qmax = 0, 127
|
|
else:
|
|
qmin, qmax = 0, 255
|
|
n_levels = 255.0
|
|
min_val = X.min()
|
|
max_val = X.max()
|
|
if min_val == max_val:
|
|
scale = 1.0
|
|
zero_point = 0
|
|
else:
|
|
max_val = max(max_val, 0.0)
|
|
min_val = min(min_val, 0.0)
|
|
scale = (max_val - min_val) / n_levels
|
|
scale = max(scale, np.finfo(np.float32).eps)
|
|
zero_point = qmin - round(min_val / scale)
|
|
zero_point = max(qmin, zero_point)
|
|
zero_point = min(qmax, zero_point)
|
|
return [float(scale), int(zero_point)]
|
|
|
|
def _calculate_dynamic_per_channel_qparams(X, dtype):
|
|
"""Calculate the dynamic quantization parameters (scale, zero_point)
|
|
according to the min and max element of the tensor"""
|
|
if isinstance(X, torch.Tensor):
|
|
X = X.numpy()
|
|
qmin, qmax = torch.iinfo(dtype).min, torch.iinfo(dtype).max
|
|
n_levels = qmax - qmin
|
|
scale = np.zeros(X.shape[0], dtype=np.float64)
|
|
zero_point = np.zeros(X.shape[0], dtype=np.int64)
|
|
for i in range(zero_point.shape[0]):
|
|
min_val = X.min()
|
|
max_val = X.max()
|
|
if min_val == max_val:
|
|
scale[i] = 1.0
|
|
zero_point[i] = 0
|
|
else:
|
|
max_val = max(max_val, 0.0)
|
|
min_val = min(min_val, 0.0)
|
|
scale[i] = (max_val - min_val) / n_levels
|
|
scale[i] = max(scale[i], np.finfo(np.float32).eps)
|
|
zero_point[i] = qmin - round(min_val / scale[i])
|
|
zero_point[i] = max(qmin, zero_point[i])
|
|
zero_point[i] = min(qmax, zero_point[i])
|
|
|
|
return scale, zero_point
|
|
|
|
@contextmanager
|
|
def override_quantized_engine(qengine):
|
|
previous = torch.backends.quantized.engine
|
|
torch.backends.quantized.engine = qengine
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.backends.quantized.engine = previous
|