mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-29 11:14:56 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72735 We use `get_matched_types` to get the (type) pattern from matched modules. And we need to use MatchAllNode instead of type(MatchAllNode) to query the fuser_method for the pattern Test Plan: TODO Imported from OSS Reviewed By: raghuramank10000 Differential Revision: D34180705 fbshipit-source-id: db9b6e791a9f26b70079fddc95fce033052199ab (cherry picked from commit 01d38afabcb1bfc207dee7d49ee13df500d32fdf)
278 lines
12 KiB
Python
278 lines
12 KiB
Python
import torch.nn as nn
|
|
import torch.nn.intrinsic as nni
|
|
|
|
from typing import Union, Callable, Tuple, Dict, Optional, Type
|
|
from torch.ao.quantization.utils import Pattern
|
|
|
|
from torch.ao.quantization.utils import get_combined_dict
|
|
from torch.ao.quantization.utils import MatchAllNode
|
|
import itertools
|
|
|
|
def fuse_conv_bn(is_qat, conv, bn):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
is_qat: a flag for whether we are using quantization aware training fusion
|
|
or post training quantization fusion
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> m2 = fuse_conv_bn(m1, b1)
|
|
"""
|
|
assert(conv.training == bn.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
|
|
fused_module_class_map = {
|
|
nn.Conv1d: nni.ConvBn1d,
|
|
nn.Conv2d: nni.ConvBn2d,
|
|
nn.Conv3d: nni.ConvBn3d,
|
|
}
|
|
|
|
if is_qat:
|
|
# TODO: remove the assert later
|
|
assert conv.training, "qat is only supported when conv.training is True currently"
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
|
|
assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
|
|
fused_module_class = fused_module_class_map.get((type(conv)), None)
|
|
if fused_module_class is not None:
|
|
return fused_module_class(conv, bn)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
|
|
else:
|
|
return nn.utils.fuse_conv_bn_eval(conv, bn)
|
|
|
|
def fuse_conv_bn_relu(is_qat, conv, bn, relu):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
is_qat: a flag for whether we are using quantization aware training fusion
|
|
or post training quantization fusion
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> r1 = nn.ReLU(inplace=False)
|
|
>>> m2 = fuse_conv_bn_relu(m1, b1, r1)
|
|
"""
|
|
assert(conv.training == bn.training == relu.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
fused_module : Optional[Type[nn.Sequential]] = None
|
|
if is_qat:
|
|
# TODO: remove the assert later
|
|
assert conv.training, "qat is only supported when conv.training is True currently"
|
|
map_to_fused_module_train = {
|
|
nn.Conv1d: nni.ConvBnReLU1d,
|
|
nn.Conv2d: nni.ConvBnReLU2d,
|
|
nn.Conv3d: nni.ConvBnReLU3d,
|
|
}
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
|
|
assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
|
|
fused_module = map_to_fused_module_train.get(type(conv), None)
|
|
if fused_module is not None:
|
|
return fused_module(conv, bn, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
|
|
else:
|
|
map_to_fused_module_eval = {
|
|
nn.Conv1d: nni.ConvReLU1d,
|
|
nn.Conv2d: nni.ConvReLU2d,
|
|
nn.Conv3d: nni.ConvReLU3d,
|
|
}
|
|
fused_module = map_to_fused_module_eval.get(type(conv), None)
|
|
if fused_module is not None:
|
|
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
|
return fused_module(fused_conv, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
|
|
|
|
def fuse_linear_bn(is_qat, linear, bn):
|
|
r"""Given the linear and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
is_qat: a flag for whether we are using quantization aware training fusion
|
|
or post training quantization fusion
|
|
linear: Module instance of type Linear
|
|
bn: BatchNorm1d instance that needs to be fused with the linear layer
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Linear(20, 10)
|
|
>>> b1 = nn.BatchNorm1d(10)
|
|
>>> m2 = fuse_linear_bn(m1, b1)
|
|
"""
|
|
assert(linear.training == bn.training),\
|
|
"Linear and BN both must be in the same mode (train or eval)."
|
|
|
|
if is_qat:
|
|
# TODO: remove the assert later
|
|
assert linear.training, "qat is only supported when linear.training is True currently"
|
|
assert bn.num_features == linear.out_features,\
|
|
"Output features of Linear must match num_features of BatchNorm1d"
|
|
assert bn.affine, "Only support fusing BatchNorm1d with affine set to True"
|
|
assert bn.track_running_stats,\
|
|
"Only support fusing BatchNorm1d with tracking_running_stats set to True"
|
|
return nni.LinearBn1d(linear, bn)
|
|
else:
|
|
return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
|
|
|
|
def fuse_convtranspose_bn(is_qat, convt, bn):
|
|
r"""Given ConvTranspose and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
convt: Module instance of type ConvTransposeNd
|
|
bn: BatchNormNd instance that needs to be fused with the linear layer.
|
|
batch norm N should match the ConvTranspose N
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.ConvTranspose2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> m2 = fuse_convtranspose_bn(m1, b1)
|
|
"""
|
|
assert(convt.training == bn.training),\
|
|
"ConvTranspose and BN both must be in the same mode (train or eval)."
|
|
|
|
if is_qat:
|
|
assert convt.training, "qat is only supported when convt.training is True currently"
|
|
raise Exception("Fusing ConvTranspose+BatchNorm not yet supported in training.")
|
|
else:
|
|
return nn.utils.fusion.fuse_conv_bn_eval(convt, bn, transpose=True)
|
|
|
|
def sequential_wrapper2(sequential):
|
|
""" Given a sequential class for two modules, return a function that takes
|
|
is_qat, and then two modules as argument, that ignores the is_qat flag
|
|
and always returns the sequential that combines the two input modules
|
|
"""
|
|
def fuser_method(is_qat, m1, m2):
|
|
return sequential(m1, m2)
|
|
return fuser_method
|
|
|
|
DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = {
|
|
(nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
|
|
(nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
|
|
(nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
|
|
(nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv1d, nn.ReLU): sequential_wrapper2(nni.ConvReLU1d),
|
|
(nn.Conv2d, nn.ReLU): sequential_wrapper2(nni.ConvReLU2d),
|
|
(nn.Conv3d, nn.ReLU): sequential_wrapper2(nni.ConvReLU3d),
|
|
(nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
|
|
(nn.Linear, nn.ReLU): sequential_wrapper2(nni.LinearReLU),
|
|
(nn.BatchNorm2d, nn.ReLU): sequential_wrapper2(nni.BNReLU2d),
|
|
(nn.BatchNorm3d, nn.ReLU): sequential_wrapper2(nni.BNReLU3d),
|
|
(nn.ConvTranspose1d, nn.BatchNorm1d): fuse_convtranspose_bn,
|
|
(nn.ConvTranspose2d, nn.BatchNorm2d): fuse_convtranspose_bn,
|
|
(nn.ConvTranspose3d, nn.BatchNorm3d): fuse_convtranspose_bn,
|
|
}
|
|
|
|
def get_fuser_method(op_list, additional_fuser_method_mapping=None):
|
|
''' Get fuser method for the given list of module types,
|
|
return None if fuser method does not exist
|
|
'''
|
|
if additional_fuser_method_mapping is None:
|
|
additional_fuser_method_mapping = dict()
|
|
all_mappings = get_combined_dict(DEFAULT_OP_LIST_TO_FUSER_METHOD,
|
|
additional_fuser_method_mapping)
|
|
fuser_method = all_mappings.get(op_list, None)
|
|
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
|
|
return fuser_method
|
|
|
|
def reverse_sequential_wrapper2(sequential):
|
|
""" Given a sequential class for two modules, return a function that takes
|
|
is_qat, and then two modules as argument, that ignores the is_qat flag
|
|
and always returns the sequential that combines the two input modules, with
|
|
the order of two inputs reversed
|
|
"""
|
|
def fuser_method(is_qat, m1, m2):
|
|
return sequential(m2, m1)
|
|
return fuser_method
|
|
|
|
def reverse2(f):
|
|
def reversed(is_qat, x, y):
|
|
return f(is_qat, y, x)
|
|
return reversed
|
|
|
|
def reverse3(f):
|
|
def reversed(is_qat, x, w):
|
|
y, z = w
|
|
return f(is_qat, z, y, x)
|
|
return reversed
|
|
|
|
DEFAULT_PATTERN_TO_FUSER_METHOD: Dict[Pattern, Union[nn.Sequential, Callable]] = {
|
|
(nn.BatchNorm1d, nn.Conv1d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm1d, nn.Conv1d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.BatchNorm2d, nn.Conv2d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm2d, nn.Conv2d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.BatchNorm3d, nn.Conv3d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm3d, nn.Conv3d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.ReLU, nn.Conv1d): reverse_sequential_wrapper2(nni.ConvReLU1d),
|
|
(nn.ReLU, nn.Conv2d): reverse_sequential_wrapper2(nni.ConvReLU2d),
|
|
(nn.ReLU, nn.Conv3d): reverse_sequential_wrapper2(nni.ConvReLU3d),
|
|
(nn.BatchNorm1d, nn.Linear): reverse2(fuse_linear_bn),
|
|
(nn.ReLU, nn.Linear): reverse_sequential_wrapper2(nni.LinearReLU),
|
|
(nn.ReLU, nn.BatchNorm2d): reverse_sequential_wrapper2(nni.BNReLU2d),
|
|
(nn.ReLU, nn.BatchNorm3d): reverse_sequential_wrapper2(nni.BNReLU3d),
|
|
(nn.BatchNorm1d, nn.ConvTranspose1d): reverse2(fuse_convtranspose_bn),
|
|
(nn.BatchNorm2d, nn.ConvTranspose2d): reverse2(fuse_convtranspose_bn),
|
|
(nn.BatchNorm3d, nn.ConvTranspose3d): reverse2(fuse_convtranspose_bn),
|
|
}
|
|
|
|
def get_valid_patterns(op_pattern):
|
|
"""
|
|
Returns a list of valid patterns generated from the op_pattern,
|
|
since MatchAllNode can match all types of nodes,
|
|
e.g. pattern (torch.nn.Conv2d, torch.add) should also be able to match keys like
|
|
(MatchAllNode, torch.add) and (torch.nn.Conv2d, MatchAllNode)
|
|
|
|
Example Input:
|
|
(torch.add, (torch.nn.ReLU, torch.nn.Conv2d))
|
|
|
|
Example Output:
|
|
[(torch.add, (torch.nn.ReLU, torch.nn.Conv2d)),
|
|
(torch.add, (torch.nn.ReLU, MatchAllNode)),
|
|
(torch.add, (MatchAllNode, torch.nn.Conv2d)),
|
|
(torch.add, (MatchAllNode, MatchAllNode)),
|
|
(MatchAllNode, (torch.nn.ReLU, torch.nn.Conv2d)),
|
|
(MatchAllNode, (torch.nn.ReLU, MatchAllNode)),
|
|
(MatchAllNode, (MatchAllNode, torch.nn.Conv2d)),
|
|
(MatchAllNode, (MatchAllNode, MatchAllNode)),
|
|
]
|
|
"""
|
|
result = []
|
|
if isinstance(op_pattern, (tuple, list)):
|
|
sub_combs = []
|
|
for sub_pattern in op_pattern:
|
|
sub_combs.append(get_valid_patterns(sub_pattern))
|
|
result = list(itertools.product(*sub_combs))
|
|
else:
|
|
result = [op_pattern, MatchAllNode]
|
|
return result
|
|
|
|
def get_fuser_method_new(
|
|
op_pattern: Pattern,
|
|
fuser_method_mapping: Optional[Dict[Pattern, Union[nn.Sequential, Callable]]] = None):
|
|
""" This will be made defult after we deparate the get_fuser_method
|
|
Would like to implement this first and have a separate PR for deprecation
|
|
"""
|
|
if fuser_method_mapping is None:
|
|
fuser_method_mapping = DEFAULT_PATTERN_TO_FUSER_METHOD
|
|
|
|
op_patterns = get_valid_patterns(op_pattern)
|
|
fuser_method = None
|
|
for op_pattern in op_patterns:
|
|
fuser_method = fuser_method_mapping.get(op_pattern, None)
|
|
if fuser_method is not None:
|
|
break
|
|
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern)
|
|
return fuser_method
|