Files
pytorch/torch/_dynamo/codegen.py
Ryan Guo 162eba2dee [dynamo] Remove mutable_local.source and index on VariableTracker rather than MutableLocalBase (#137905)
This patch addresses parts of the side-effect refactor proposed in #133027;
specifically, it does 3 things:

1. Change `SideEffects.store_attr_mutations` and `PyCodegen.tempvars`
   to index on `VariableTracker` rather than `MutableLocalBase`.
2. Remove the `source` field from `MutableSideEffects` and
   `AttributeMutation`, and use `VariableTracker.source` instead.
3. Plumb a `overridden_sources: Dict[Source, Source]` from
   `handle_aliases_for_stolen_lists` to `PyCodegen` so that we don't
   update `VariableTracker.source` in place, while still preserving what
   `handle_aliases_for_stolen_lists` needed (i.e., modifying codegen for
   certain `VariableTracker`).

(1) and (2) are merged in 1 patch because of some dependency between
a. `OutputGraph.handle_aliases_for_stolen_lists` which iterates over
   `sideSideEffects.store_attr_mutations.keys()`, and potentially update
   its source field to be completely different.
b. `SideEffects.codegen_update_mutated`, which happens after the above
   and uses `cg(var.mutable_local.source)`.
where if we apply (1) only, (b) breaks, and if we apply (2) only, (a)
breaks.

(3) is needed for correctness, see comments in the PR for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137905
Approved by: https://github.com/jansel, https://github.com/anijain2305, https://github.com/mlazos
2024-10-18 20:20:42 +00:00

515 lines
19 KiB
Python

# mypy: allow-untyped-defs
import collections
import dataclasses
import re
import sys
import types
from typing import Counter, Dict, List, Optional
import torch.nn
from . import utils
from .bytecode_transformation import (
add_push_null,
add_push_null_call_function_ex,
create_call_function,
create_call_method,
create_dup_top,
create_instruction,
create_load_method,
create_rot_n,
Instruction,
)
from .exc import unimplemented
from .source import AttrSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import VariableTracker
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
NumpyNdarrayVariable,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable
@dataclasses.dataclass
class GraphOutputEntry:
index: int
variable: VariableTracker
class PyCodegen:
"""
Helper class uses for constructing Python bytecode
"""
def __init__(
self,
tx=None,
root: Optional[torch.nn.Module] = None,
graph_output_var: Optional[str] = None,
tempvars=None,
overridden_sources=None,
) -> None:
self.root = root
self.top_of_stack: Optional[VariableTracker] = None
self.uses: Counter[VariableTracker] = collections.Counter()
self.graph_outputs: Dict[int, GraphOutputEntry] = {}
self._output: List[Instruction] = []
self.tempvars = tempvars or {}
self.tx = tx
self.graph_output_var = graph_output_var
self.code_options = self.tx.output.code_options
self.cell_and_freevars = self.tx.cell_and_freevars
self.new_var = self.tx.output.new_var
self.mutable_side_effects_from_source = False
self.value_from_source: bool = True
# This serves as a way for codegen to use a different source; we need
# this because sometimes we can't easily modify the original source
# without affecting other components, e.g., guards.
self.overridden_sources: Dict[Source, Source] = overridden_sources or {}
def restore_stack(self, stack_values, *, value_from_source=True):
prior = self.mutable_side_effects_from_source
self.mutable_side_effects_from_source = True
prev = self.value_from_source
self.value_from_source &= value_from_source
try:
self.foreach(stack_values)
finally:
self.mutable_side_effects_from_source = prior
self.value_from_source = prev
def graph_output_vars(self):
return [x.variable for x in self.graph_outputs.values()]
def call_reconstruct(self, value):
res = value.reconstruct(self)
assert res is None, f"reconstruct!=None {value}"
def add_push_null(self, gen_fn, call_function_ex=False):
"""
`gen_fn` generates instructions via PyCodegen methods
that push a single callable to the stack.
`add_push_null` pushes a NULL to the stack before or after the
instructions generated by `gen_fn`, depending on Python version.
Will attempt to use the NULL push bit for instructions
with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
"""
old_len = len(self._output)
if sys.version_info < (3, 13):
# gen_fn may DUP_TOP instead if TOS is not cleared.
# Will cause problems since NULL will be pushed right
# before the generated instructions in <= 3.12
self.clear_tos()
gen_fn()
# inplace modify self._output
added_insts = self._output[old_len:]
del self._output[old_len:]
if call_function_ex:
self._output.extend(add_push_null_call_function_ex(added_insts))
else:
self._output.extend(add_push_null(added_insts))
if sys.version_info >= (3, 13):
# NULL will be at top of stack
self.clear_tos()
def __call__(self, value, allow_cache=True):
"""Generate code such that top-of-stack (TOS) is set to value"""
if isinstance(value, Source):
# If the source needs to be overridden, use the new one.
source = self.overridden_sources.get(value, value)
self.call_reconstruct(source)
self.clear_tos()
return
assert isinstance(value, VariableTracker)
output = self._output
graph_outputs = self.graph_outputs
if self.top_of_stack is value and allow_cache:
output.append(create_dup_top())
return
if self.mutable_side_effects_from_source:
# this is needed to get aliasing relationships right
# value.source will get mutated to hold `value`
# mutable_side_effects_from_source=False is used to codegen the mutation
# mutable_side_effects_from_source=True is used to codegen a reference
from .side_effects import MutableSideEffects
if isinstance(value.mutable_local, MutableSideEffects):
self(value.source)
return
if allow_cache:
if self.tempvars.get(value) is not None:
output.append(self.create_load(self.tempvars[value]))
self.top_of_stack = value
return
if value.source is not None and allow_cache and self.value_from_source:
# If the source needs to be overridden, use the new one.
source = self.overridden_sources.get(value.source, value.source)
self.call_reconstruct(source)
elif value.is_python_constant() and is_safe_constant(
value.as_python_constant()
):
output.append(self.create_load_const(value.as_python_constant()))
elif isinstance(value, TensorWithTFOverrideVariable):
graph_outputs_key = self.add_graph_output(value)
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_subclass")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(
self.create_load_global(
value.global_mangled_class_name(self.tx), add=True
)
)
output.extend(create_call_function(2, False))
elif (
isinstance(value, SymNodeVariable)
and value.python_type() == float
and not self.tx.export
):
# This is a little unusual; force the output convention to be a
# Tensor here. Don't do this for export because this is
# apparently load bearing for export tests (but I am a bit
# doubtful it actually works in the real world)
# NB: It works to add_graph_output on a computed expression
# as_tensor here, because we memoize as_tensor calls on
# SymNodeVariable!
graph_outputs_key = self.add_graph_output(value.as_tensor(self.tx))
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
elif isinstance(
value,
(
TensorVariable,
SymNodeVariable,
UnspecializedPythonVariable,
NumpyNdarrayVariable,
),
):
graph_outputs_key = self.add_graph_output(value)
if isinstance(value, NumpyNdarrayVariable):
self.add_push_null(
lambda: self.load_import_from(utils.__name__, "to_numpy_helper")
)
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.extend(create_call_function(1, False))
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
def gen_fn():
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(self.create_load_attr("item"))
self.add_push_null(gen_fn)
output.extend(create_call_function(0, False))
else:
self.load_graph_output(graph_outputs[graph_outputs_key].index)
elif isinstance(value, NNModuleVariable):
parts = value.module_key.split(".")
if parts[0] in self.code_options["co_varnames"]:
output.append(self.create_load(parts[0]))
parts = parts[1:]
else:
assert self.root is not None
output.append(self.create_load_output(self.root))
for part in parts:
output.append(self.create_load_attr(part))
else:
self.uses[value] += 1
try:
self.call_reconstruct(value)
except NotImplementedError:
unimplemented(f"reconstruct: {value}")
if allow_cache and value in self.tempvars:
self._output.append(create_dup_top())
self.add_cache(value)
self.top_of_stack = value
def add_graph_output(self, value):
graph_outputs_key = id(value.as_proxy())
if graph_outputs_key not in self.graph_outputs:
self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
len(self.graph_outputs), value
)
return graph_outputs_key
def load_graph_output(self, index):
output = self._output
output.append(self.create_load(self.graph_output_var))
output.append(self._create_load_const(index))
output.append(create_instruction("BINARY_SUBSCR"))
def add_cache(self, value):
var = self.new_var()
self.tempvars[value] = var
self._output.append(self.create_store(var))
def foreach(self, items):
for i in items:
self(i)
def setup_globally_cached(self, name, value):
"""Store value in a new global"""
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
f_globals = self.tx.f_globals
if name in f_globals:
assert id(f_globals[name]) == id(value)
else:
f_globals[name] = value
return [self.create_load_global(name, add=True)]
def clear_tos(self):
self.top_of_stack = None
def append_output(self, inst):
assert isinstance(inst, Instruction)
self._output.append(inst)
self.clear_tos()
def extend_output(self, insts):
assert all(isinstance(x, Instruction) for x in insts)
self._output.extend(insts)
self.clear_tos()
def get_instructions(self) -> List[Instruction]:
return self._output
def create_load(self, name) -> Instruction:
if name in self.cell_and_freevars():
return create_instruction("LOAD_DEREF", argval=name)
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("LOAD_FAST", argval=name)
def create_load_closure(self, name) -> Instruction:
assert name in self.cell_and_freevars()
inst_name = "LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
return create_instruction(inst_name, argval=name)
def create_store(self, name) -> Instruction:
if name in self.cell_and_freevars():
return create_instruction("STORE_DEREF", argval=name)
assert name in self.code_options["co_varnames"]
return create_instruction("STORE_FAST", argval=name)
def create_load_global(self, name, add=False) -> Instruction:
if add:
self.tx.output.update_co_names(name)
assert name in self.code_options["co_names"], f"{name} not in co_names"
return create_instruction("LOAD_GLOBAL", argval=name)
def create_load_const(self, value) -> Instruction:
assert is_safe_constant(value), f"unsafe constant {value}"
return self._create_load_const(value)
def _create_load_const(self, value) -> Instruction:
return create_instruction("LOAD_CONST", argval=value)
create_load_output = _create_load_const
def load_method(self, name):
self.tx.output.update_co_names(name)
self.append_output(create_load_method(name))
def call_method(self, nargs):
self.extend_output(create_call_method(nargs))
def create_load_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("LOAD_ATTR", argval=name)
def load_attr(self, name):
self.append_output(self.create_load_attr(name))
def create_load_attrs(self, names):
return [self.create_load_attr(name) for name in names.split(".")]
def create_store_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("STORE_ATTR", argval=name)
def store_attr(self, name):
self.append_output(self.create_store_attr(name))
def load_function_name(self, fn_name, push_null, num_on_stack=0):
"""Load the global fn_name on the stack num_on_stack down"""
output = []
if push_null and sys.version_info >= (3, 11):
output.extend(add_push_null(self.create_load_global(fn_name, add=True)))
if num_on_stack > 0:
output.extend(
[
*self.rot_n(num_on_stack + 2),
*self.rot_n(num_on_stack + 2),
]
)
else:
output.extend(
[
self.create_load_global(fn_name, add=True),
*self.rot_n(num_on_stack + 1),
]
)
return output
def rot_n(self, n):
try:
return create_rot_n(n)
except AttributeError:
# desired rotate bytecode doesn't exist, generate equivalent bytecode
return [
create_instruction("BUILD_TUPLE", arg=n),
self._create_load_const(rot_n_helper(n)),
*create_rot_n(2),
create_instruction("CALL_FUNCTION_EX", arg=0),
create_instruction("UNPACK_SEQUENCE", arg=n),
]
def pop_null(self):
# POP_TOP doesn't work for null, so we pop nulls by pushing in a
# nop function, calling it (which consumes the null), and popping the result.
assert sys.version_info >= (3, 11)
return [
self._create_load_const(lambda: None),
# 3.13 swapped NULL and callable
*(
(create_instruction("SWAP", arg=2),)
if sys.version_info >= (3, 13)
else ()
),
*create_call_function(0, False),
create_instruction("POP_TOP"),
]
def pop_top(self):
self.append_output(create_instruction("POP_TOP"))
def call_function(self, nargs: int, push_null: bool):
self.extend_output(create_call_function(nargs, push_null=push_null))
def dup_top(self):
self.append_output(create_dup_top())
def store(self, varname):
self.append_output(self.create_store(varname))
def make_function_with_closure(
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
):
freevars = code.co_freevars
assert freevars
output = self._output
def gen_fn():
for var in freevars:
assert var in self.cell_and_freevars()
inst_name = (
"LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
)
output.append(create_instruction(inst_name, argval=var))
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
output.append(self.create_load_const(code))
if sys.version_info < (3, 11):
output.append(self.create_load_const(fn_name))
if sys.version_info >= (3, 13):
output.extend(
[
create_instruction("MAKE_FUNCTION"),
create_instruction("SET_FUNCTION_ATTRIBUTE", arg=0x08),
]
)
else:
output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
if push_null and sys.version_info >= (3, 11):
self.add_push_null(gen_fn)
output.extend(self.rot_n(num_on_stack + 2))
output.extend(self.rot_n(num_on_stack + 2))
else:
gen_fn()
output.extend(self.rot_n(num_on_stack + 1))
self.clear_tos()
def create_load_python_module(self, mod) -> Instruction:
"""
Generate a LOAD_GLOBAL instruction to fetch a given python module.
"""
output = self.tx.output
global_scope = output.global_scope
name = re.sub(r"^.*[.]", "", mod.__name__)
if global_scope.get(name, None) is mod:
return self.create_load_global(name, add=True)
prefix = f"___module_{name}"
global_name = self.tx.output.install_global_by_id(prefix, mod)
return self.create_load_global(global_name, add=True)
def make_call_generated_code(self, fn_name: str) -> None:
"""Call the generated code function stored in fn_name"""
self.extend_output(self.load_function_name(fn_name, True))
graphargs = self.tx.output.graphargs
for arg in graphargs:
if arg.pass_arg_as_tensor:
self.add_push_null(
lambda: self.extend_output(
[
self.create_load_python_module(torch),
self.create_load_attr("_as_tensor_fullprec"),
]
)
)
self.call_reconstruct(arg)
self.extend_output(create_call_function(1, False))
else:
self.call_reconstruct(arg)
self.extend_output(create_call_function(len(graphargs), False))
def load_import_from(self, module_name, object_name) -> None:
self(AttrSource(self.tx.import_source(module_name), object_name))
def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]:
if sys.version_info >= (3, 13):
output = create_call_function(nargs, push_null)
assert output[-1].opname == "CALL"
output.insert(-1, self.create_load_const(kw_names))
output[-1] = create_instruction("CALL_KW", arg=nargs)
return output
elif sys.version_info >= (3, 11):
output = create_call_function(nargs, push_null)
if sys.version_info >= (3, 12):
idx = -1
expected_inst = "CALL"
else:
idx = -2
expected_inst = "PRECALL"
assert output[idx].opname == expected_inst
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
output.insert(idx, kw_names_inst)
return output
return [
self.create_load_const(kw_names),
create_instruction("CALL_FUNCTION_KW", arg=nargs),
]
def create_delete(self, value) -> Instruction:
return create_instruction("DELETE_FAST", argval=value)