Files
pytorch/benchmarks/operator_benchmark/pt/addmm_test.py
Apurva Jain 85fab6c9b0 Fix duplicate benchmarking entries for addmm (#166652)
There have been duplicate entries for addmm in dashboard. This PR fixes the duplicate entries issues
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166652
Approved by: https://github.com/yangw-dev
2025-11-06 03:25:03 +00:00

112 lines
3.0 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for add_(matmul) operator. Supports both Caffe2/PyTorch."""
# Configs for PT add operator
addmm_long_configs = op_bench.cross_product_configs(
M=[256, 1024, 3000],
N=[512, 4096],
K=[512, 4096],
device=["cuda"],
tags=["long"],
dtype=[torch.float16, torch.bfloat16, torch.float32],
)
addmm_short_configs = op_bench.config_list(
attr_names=["M", "N", "K"],
attrs=[
[1, 1, 1],
[64, 64, 64],
[64, 64, 128],
],
cross_product_configs={
"device": ["cpu", "cuda"],
"dtype": [torch.float],
},
tags=["short"],
)
"""Mircobenchmark for addmm operator."""
class AddmmBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, device, dtype):
self.inputs = {
"input_one": torch.rand(
M, K, device=device, requires_grad=self.auto_set(), dtype=dtype
),
"mat1": torch.rand(
M, N, device=device, requires_grad=self.auto_set(), dtype=dtype
),
"mat2": torch.rand(
N, K, device=device, requires_grad=self.auto_set(), dtype=dtype
),
}
self.set_module_name("addmm")
def forward(self, input_one, mat1, mat2):
return torch.addmm(input_one, mat1, mat2)
op_bench.generate_pt_test(addmm_short_configs + addmm_long_configs, AddmmBenchmark)
op_bench.generate_pt_gradient_test(addmm_long_configs, AddmmBenchmark)
"""Mircobenchmark for addbmm operator."""
class AddbmmBenchmark(op_bench.TorchBenchmarkBase):
def init(self, B, M, N, K, device, dtype):
self.inputs = {
"input_one": torch.rand(
(M, N), device=device, requires_grad=self.auto_set(), dtype=dtype
),
"batch1": torch.rand(
(B, M, K), device=device, requires_grad=self.auto_set(), dtype=dtype
),
"batch2": torch.rand(
(
B,
K,
N,
),
device=device,
requires_grad=self.auto_set(),
dtype=dtype,
),
}
self.set_module_name("addbmm")
def forward(self, input_one, batch1, batch2):
return torch.addbmm(input_one, batch1, batch2)
addbmm_long_configs = op_bench.cross_product_configs(
B=[8, 32],
M=[256, 1024],
N=[256, 1024],
K=[64, 128],
device=["cuda"],
dtype=[torch.float16, torch.bfloat16, torch.float32],
tags=["long"],
)
addbmm_short_configs = op_bench.cross_product_configs(
B=[1, 8],
M=[8, 128],
N=[32, 64],
K=[256, 512],
device=["cpu", "cuda"],
dtype=[torch.float16, torch.bfloat16, torch.float32],
tags=["short"],
)
op_bench.generate_pt_test(addbmm_long_configs + addbmm_short_configs, AddbmmBenchmark)
op_bench.generate_pt_gradient_test(addbmm_long_configs, AddbmmBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()