Files
pytorch/c10/core/TensorImpl.cpp
PyTorch MergeBot 1586521461 Revert "Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)"
This reverts commit 2c76f31221e117b217b8a6a96a5405f626d2218a.

Reverted https://github.com/pytorch/pytorch/pull/155590 on behalf of https://github.com/jeanschmidt due to Breaking 1000s of internal builds, it cant be properly landed internally, there are no options except revert and codev. ([comment](https://github.com/pytorch/pytorch/pull/155590#issuecomment-3023503929))
2025-07-01 11:23:00 +00:00

1003 lines
35 KiB
C++

#include <c10/core/TensorImpl.h>
#include <c10/core/Contiguity.h>
#include <c10/core/CopyBytes.h>
#include <c10/core/InferenceMode.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/core/impl/PyInterpreter.h>
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <c10/util/Logging.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <optional>
#include <utility>
C10_DEFINE_bool(
caffe2_keep_on_shrink,
true,
"If set, keeps memory when a tensor is shrinking its size.")
C10_DEFINE_int64(
caffe2_max_keep_on_shrink_memory,
LLONG_MAX,
"The maximum memory in bytes to keep on shrink, if the difference between "
"tensor sizes is bigger than this then tensor will be reset.")
namespace c10 {
const char* const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
"is not allowed on a Tensor created from .data or .detach().\n"
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
"For example, change:\n"
" x.data.set_(y)\n"
"to:\n"
" with torch.no_grad():\n"
" x.set_(y)";
at::Tensor& TensorImpl::mutable_grad() {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
return autograd_meta_->mutable_grad();
}
const at::Tensor& TensorImpl::grad() const {
// Yes, I know this looks really weird. But I don't really have a choice as
// long as this function returns a const reference to Tensor. I'm not
// really sure how I would have designed this API differently, but it
// is not so easy to fix right now because the mutable counterpart of
// this function must keep working so that "x.grad() = ..." keeps working
// (part of public API).
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->grad();
}
const at::Tensor& TensorImpl::_fw_grad(
uint64_t level,
const at::TensorBase& self) const {
// See TensorImpl::grad() above for explanation about the line below
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->fw_grad(level, self);
}
void TensorImpl::_set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op) {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
autograd_meta_->set_fw_grad(new_grad, self, level, is_inplace_op);
}
TensorImpl::~TensorImpl() = default;
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
// Use std::forward to suppress static analyzer false positive.
: TensorImpl(std::move(storage), key_set, data_type, storage.device()) {}
// [Note: Python key removal]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// In most constructors for TensorImpl, you will see Python and
// PythonTLSSnapshot keys are removed from the passed in DispatchKeySet. Why?
//
// INVARIANT: Python and PythonTLSSnapshot dispatch keys are set iff PyObject
// for the Tensor has a nontrivial __torch_dispatch__ implementation.
//
// When a fresh TensorImpl is created, there is *no* PyObject (this only gets
// initialized lazily at the first point in time the Tensor passes into Python).
// So we would violate the invariant.
//
// In practice, what will happen shortly afterwards is that the TensorImpl
// will get its PyObject initialized by Tensor._make_subclass; at this point
// the Python and PythonTLSSnapshot dispatch keys will be set and all is well.
// The point is to delay the dispatch key setting until that point.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
ImplType /*type*/,
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
: storage_(std::move(storage)),
numel_(0),
data_type_(data_type),
device_opt_(storage_.device()),
key_set_(key_set - c10::python_ks) { // See [Note: Python key removal]
init_bitfields();
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
}
TensorImpl::TensorImpl(
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
std::optional<c10::Device> device_opt)
: TensorImpl({}, key_set, data_type, device_opt) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
std::optional<c10::Device> device_opt)
: storage_(std::move(storage)),
numel_(0),
data_type_(data_type),
device_opt_(device_opt) {
init_bitfields();
if (!key_set.empty()) {
TORCH_INTERNAL_ASSERT(
data_type == ScalarType::Undefined || device_opt_.has_value());
// UndefinedTensorImpl is a singleton, so we skip logging it
C10_LOG_API_USAGE_ONCE("tensor.create");
}
// XXX: if updating keyset logic here also update
// _change_backend_component_keys
bool inference_mode = c10::InferenceMode::is_enabled();
// TODO: be more explicit about the full key set at call sites so we
// don't have to keep recomputing it here
auto k = key_set.highestBackendKey();
key_set = key_set | getAutocastRelatedKeySetFromBackend(k);
// See [Note: Python key removal]
key_set = key_set - c10::python_ks;
// Inference tensor doesn't have autograd related keys.
if (inference_mode) {
// See Note [Expected TLS state in InferenceMode] for why we exclude
// Autograd & ADInplaceOrView keys. Normally key_set only contains backend
// keys but we do the subtraction here to make sure.
key_set_ = key_set - c10::autograd_dispatch_keyset_with_ADInplaceOrView;
} else {
// TODO: Ideally we only add AutogradBackend key when the tensor requires
// grad.
// See Note [Dream: skip VariableType kernel when requires_grad=false]
key_set_ = key_set | getAutogradRelatedKeySetFromBackend(k);
}
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
// we would also like to check that non-cpu devices have an index, but some
// Caffe2 operators create Storages with default devices.
}
void TensorImpl::_change_backend_component_keys(c10::Device device) {
BackendComponent new_backend = toBackendComponent(device.type());
BackendComponent old_backend = key_set_.highestBackendKey();
// following logic TensorImpl::TensorImpl, update the BackendComponent related
// keys to correspond to device
// TODO: Autocoast should be a per-backend functionality key, once that change
// is made this key swap will not be necessary.
auto key_set =
key_set_ - c10::getAutocastRelatedKeySetFromBackend(old_backend);
key_set = key_set | c10::getAutocastRelatedKeySetFromBackend(new_backend);
// See note [Removing keys from DispatchKeySet Only Affects Functionality
// Keys]
key_set = key_set.remove_backend(old_backend);
key_set_ = key_set | DispatchKeySet(new_backend);
}
void TensorImpl::HandleResize() {
// If needed, we will free the data. the next mutable_data() call
// will create the data storage.
bool reset_tensor = false;
if (reserved_) {
// If tensor is reserved then don't claim its memory unless nbytes()
// is smaller than new size
reset_tensor =
storage_.nbytes() < (storage_offset_ + numel_) * data_type_.itemsize();
} else {
reset_tensor = storage_.nbytes() <
(storage_offset_ + numel_) * data_type_.itemsize() ||
!FLAGS_caffe2_keep_on_shrink ||
storage_.nbytes() - (storage_offset_ + numel_) * data_type_.itemsize() >
static_cast<size_t>(FLAGS_caffe2_max_keep_on_shrink_memory);
}
if (reset_tensor && storage_initialized()) {
FreeMemory();
}
}
bool TensorImpl::compute_contiguous() const {
if (is_sparse()) {
return false;
}
return _compute_contiguous<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref(),
numel_);
}
bool TensorImpl::compute_channels_last_contiguous_2d() const {
if (is_sparse()) {
return false;
}
return _compute_channels_last_contiguous_2d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_channels_last_contiguous_3d() const {
if (is_sparse()) {
return false;
}
return _compute_channels_last_contiguous_3d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_strides_like_channels_last_2d() const {
if (is_sparse()) {
return false;
}
return is_channels_last_strides_2d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_strides_like_channels_last_3d() const {
if (is_sparse()) {
return false;
}
return is_channels_last_strides_3d<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
bool TensorImpl::compute_non_overlapping_and_dense() const {
if (is_sparse()) {
return false;
}
return _compute_non_overlapping_and_dense<int64_t>(
sizes_and_strides_.sizes_arrayref(),
sizes_and_strides_.strides_arrayref());
}
void TensorImpl::release_resources() {
autograd_meta_.reset();
if (storage_) {
storage_ = {};
}
pyobj_slot_.maybe_destroy_pyobj();
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
bool TensorImpl::has_storage() const {
return storage_;
}
#endif
void TensorImpl::throw_cannot_call_with_symbolic(const char* meth) const {
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
false, "Cannot call ", meth, "() on tensor with symbolic sizes/strides");
}
void TensorImpl::throw_storage_access_error() const {
if (extra_meta_ && extra_meta_->custom_storage_error_msg_) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
TORCH_CHECK(false, *extra_meta_->custom_storage_error_msg_);
}
TORCH_CHECK_NOT_IMPLEMENTED(
false, "Cannot access storage of ", tensorimpl_type_name());
}
void TensorImpl::throw_data_ptr_access_error() const {
if (extra_meta_ && extra_meta_->custom_data_ptr_error_msg_) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
TORCH_CHECK(false, *extra_meta_->custom_data_ptr_error_msg_);
}
TORCH_CHECK(
false, "Cannot access data pointer of Tensor that doesn't have storage");
}
bool TensorImpl::is_contiguous_custom(at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return is_contiguous_default(memory_format);
}
bool TensorImpl::is_strides_like_custom(at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_strides_like(
this, memory_format);
}
return is_strides_like_default(memory_format);
}
bool TensorImpl::is_non_overlapping_and_dense_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_non_overlapping_and_dense(
this);
}
return is_non_overlapping_and_dense_default();
}
IntArrayRef TensorImpl::sizes_custom() const {
if (C10_UNLIKELY(
matches_python_custom(SizesStridesPolicy::CustomSizes) ||
has_symbolic_sizes_strides_)) {
return pyobj_slot_.load_pyobj_interpreter()->sizes(this);
}
return sizes_default();
}
c10::SymIntArrayRef TensorImpl::sym_sizes_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_sizes(this);
}
return sym_sizes_default();
}
c10::SymInt TensorImpl::sym_numel_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_numel(this);
}
return sym_numel_default();
}
c10::SymIntArrayRef TensorImpl::sym_strides_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_strides(this);
}
return sym_strides_default();
}
c10::Device TensorImpl::device_custom() const {
if (C10_UNLIKELY(python_custom_device_)) {
return pyobj_slot_.load_pyobj_interpreter()->device(this);
}
return device_default();
}
IntArrayRef TensorImpl::strides_custom() const {
if (C10_UNLIKELY(
matches_python_custom(SizesStridesPolicy::CustomStrides) ||
has_symbolic_sizes_strides_)) {
return pyobj_slot_.load_pyobj_interpreter()->strides(this);
}
return strides_default();
}
int64_t TensorImpl::dim_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->dim(this);
}
return dim_default();
}
int64_t TensorImpl::numel_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->numel(this);
}
return numel_default();
}
c10::Layout TensorImpl::layout_custom() const {
if (C10_UNLIKELY(python_custom_layout_)) {
return pyobj_slot_.load_pyobj_interpreter()->layout(this);
}
// TODO: fix this
TORCH_CHECK(
0, "Tensors of type ", tensorimpl_type_name(), " do not have layout")
// return layout_default();
}
int64_t TensorImpl::storage_offset_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
// TODO: fix this
return pyobj_slot_.load_pyobj_interpreter()
->sym_storage_offset(this)
.guard_int(__FILE__, __LINE__);
}
return storage_offset_default();
}
c10::SymInt TensorImpl::sym_storage_offset_custom() const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomSizes))) {
return pyobj_slot_.load_pyobj_interpreter()->sym_storage_offset(this);
}
return sym_storage_offset_default();
}
static void deletePlacementDeleteContext(void* ptr) {
delete static_cast<PlacementDeleteContext*>(ptr);
}
at::DataPtr PlacementDeleteContext::makeDataPtr(
at::DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
at::Device device) {
auto* ptr = data_ptr.get();
return {
ptr,
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
&deletePlacementDeleteContext,
device};
}
AutogradMetaInterface::~AutogradMetaInterface() = default;
// Setting requires_grad to true on inference tensor outside InferenceMode
// is forbidden. Ideally it would also be illegal inside InferenceMode.
// But there's no way that we can directly allocate a tensor to have
// requires_grad = true in C++ constructor so set_requires_grad is widely
// used in C++ frontend. Forbidding it inside InferenceMode will force users
// to delete these setter code in their code which is not ideal.
void TensorImpl::set_requires_grad(bool requires_grad) {
TORCH_CHECK(
!(requires_grad && is_inference() && !c10::InferenceMode::is_enabled()),
"Setting requires_grad=True on inference tensor outside InferenceMode is not allowed.");
if (!requires_grad && !autograd_meta_)
return;
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
// NB: In principle, setting requires_grad to false could result in
// the AutogradMeta becoming equal to a default constructed state,
// in which case we could apply the nullptr AutogradMeta optimization
// (see autograd_meta_ docs). But we don't do this right now. Note
// that it is unsound to unconditionally set AutogradMeta to false
// when you set requires_grad to False, as there may be nontrivial
// information content in the other fields; for example, we may
// have set the string name for a Variable, or there may be hooks
// registered for it.
autograd_meta_->set_requires_grad(requires_grad, this);
}
bool TensorImpl::requires_grad() const {
if (!autograd_meta_)
return false;
return autograd_meta_->requires_grad();
}
void TensorImpl::set_autograd_meta(
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
// NB: autograd_meta may be null! That just means it's the default
// constructor
autograd_meta_ = std::move(autograd_meta);
}
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
// NB: Might return null!
return autograd_meta_.get();
}
template <typename VariableVersion>
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach_core(
VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
c10::intrusive_ptr<TensorImpl> r;
const auto mode_stack_len = c10::impl::TorchDispatchModeTLS::stack_len();
// TODO: do we have to exclude after Python dispatch key set?
if (mode_stack_len > 0 &&
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
const auto& cur_torch_dispatch_mode_state =
c10::impl::TorchDispatchModeTLS::get_stack_at(mode_stack_len - 1);
r = cur_torch_dispatch_mode_state->pyinterpreter()->detach(this);
} else if (
key_set_.has(DispatchKey::Python) &&
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
r = (pyobj_slot_.load_pyobj_interpreter())->detach(this);
}
if (r) {
if (!r->is_inference()) {
r->set_version_counter(std::forward<VariableVersion>(version_counter));
}
r->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
return r;
}
// otherwise just copy the TensorImpl and not the PyObject. Since
// the interpreter is dead no one can call us out on it
auto impl = c10::make_intrusive<TensorImpl>(
// No need to populate Storage; copy_tensor_metadata will do it for us.
key_set_,
data_type_,
device_opt_);
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/std::forward<VariableVersion>(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
return impl;
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
version_counter, allow_tensor_metadata_change);
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
std::move(version_counter), allow_tensor_metadata_change);
}
// This function copies all of the metadata from the src tensor except for:
// - key_set_
// - storage_
// - storage_access_should_throw_
// - sizes_strides_policy_
// - version_counter_
// - allow_tensor_metadata_change_
// The idea is that if we have a "wrapper tensor" (like in functionalization),
// all of the above are properties that the wrapper will want to customize,
// while everything else should be mirrored between the wrapper and the inner
// tensor.
void TensorImpl::copy_generic_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl) {
dest_impl->sizes_and_strides_ = src_impl->sizes_and_strides_;
dest_impl->has_symbolic_sizes_strides_ =
src_impl->has_symbolic_sizes_strides_;
dest_impl->storage_offset_ = src_impl->storage_offset_;
dest_impl->data_type_ = src_impl->data_type_;
dest_impl->device_opt_ = src_impl->device_opt_;
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
dest_impl->is_channels_last_contiguous_ =
src_impl->is_channels_last_contiguous_;
dest_impl->is_channels_last_3d_contiguous_ =
src_impl->is_channels_last_3d_contiguous_;
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
dest_impl->is_channels_last_3d_ = src_impl->is_channels_last_3d_;
dest_impl->is_non_overlapping_and_dense_ =
src_impl->is_non_overlapping_and_dense_;
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
dest_impl->reserved_ = src_impl->reserved_;
dest_impl->numel_ = src_impl->numel_;
if (src_impl->extra_meta_ != nullptr) {
dest_impl->extra_meta_ = src_impl->extra_meta_->clone();
} else if (dest_impl->extra_meta_ != nullptr) {
// Clean dest_impl extra meta data, cause shallow_copy_from dest impl is a
// real tensor impl, which maybe take extra meta data. This info will
// contaminate the new dest_impl metadata info.
dest_impl->extra_meta_.reset(nullptr);
}
// NB: symbolic sizes and strides are copied as is custom policy, but python
// policy is NOT (you have no Python object to dispatch to!)
// NB: subclass relevant policy doesn't have to be copied; the
// constructor sets this up
dest_impl->refresh_sizes_strides_policy();
dest_impl->refresh_layout_policy();
dest_impl->refresh_device_policy();
}
void TensorImpl::copy_tensor_metadata_except_version_counter(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
bool allow_tensor_metadata_change) {
// First call the generic copy function
copy_generic_tensor_metadata(src_impl, dest_impl);
// Then copy everything else (see the comment at copy_generic_tensor_metadata
// for the list of metadata that it does not directly copy).
dest_impl->storage_ = src_impl->storage_;
// Copying tensor metadata doesn't change the PyObject (maybe
// it should), which means that we have to preserve whatever the
// original Python keyset was (as it's associated with the PyObject
// being a tensor subclass or not)
dest_impl->key_set_ = (src_impl->key_set_ - c10::python_ks) |
(dest_impl->key_set_ & c10::python_ks);
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
dest_impl->storage_access_should_throw_ =
src_impl->storage_access_should_throw_;
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
// TODO: In the ideal end state, it's okay to set disabled version_counter
// on inference tensor since it's a no-op. This requires refactor on call
// sites.
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(version_counter);
}
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(std::move(version_counter));
}
}
// Legacy Caffe2 operations
void TensorImpl::Extend(int64_t num, float growthPct) {
TORCH_CHECK(sizes_and_strides_.size() >= 1u);
TORCH_CHECK(num >= 0, "`num` must be non-negative for Extend");
TORCH_CHECK(
is_contiguous_,
"Right now Extend is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Extend() called on tensor with symbolic shape")
using SizesVector = SmallVector<int64_t, 5>;
IntArrayRef sizes_and_strides = sizes_and_strides_.sizes_arrayref();
SizesVector newDims(sizes_and_strides.begin(), sizes_and_strides.end());
newDims[0] += num;
if (!storage_.data()) {
Resize(newDims);
return;
}
const auto newNumel = c10::multiply_integers(newDims.begin(), newDims.end());
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
sizes_and_strides_.set_sizes(newDims);
numel_ = newNumel;
return;
}
SizesVector newCapacity(sizes_and_strides.begin(), sizes_and_strides.end());
newCapacity[0] = std::max(
newDims[0],
static_cast<int64_t>(std::ceil(
static_cast<float>(sizes_and_strides_.size_at_unchecked(0)) *
(1 + growthPct / 100))));
auto oldData = std::move(storage_.mutable_data_ptr());
auto oldSize = numel_;
Resize(std::move(newCapacity));
auto* newData = raw_mutable_data(data_type_);
if (data_type_.copy()) {
TORCH_CHECK(
device_type() == DeviceType::CPU, "non-POD types work only on CPU");
data_type_.copy()(oldData.get(), newData, oldSize);
} else {
// The following copy uses the current (thread local) stream for copying
// and also takes the GPU id from the device() field passed in.
//
// TODO: Potentially more enforcements are necessary to avoid accidental
// switch to sync copy if the currently set device is wrong.
//
// Specifically, we might need to switch to a different context device
// here explicitly to avoid relying on user synchronizing things
// properly.
CopyBytes(
oldSize * itemsize(),
oldData.get(),
device(),
newData,
device(),
true); // non-blocking
}
reserved_ = true;
sizes_and_strides_.set_sizes(newDims);
numel_ = newNumel;
}
void TensorImpl::ReserveSpace(int64_t outer_dim) {
TORCH_CHECK(
is_contiguous_,
"Right now ReserveSpace is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"ReserveSpace() called on tensor with symbolic shape")
TORCH_CHECK(storage_.unique(), "Can't call ReserveSpace on shared storage.");
// TODO: eliminate newCapacity.
IntArrayRef sizes_and_strides = sizes_and_strides_.sizes_arrayref();
SmallVector<int64_t, 5> newCapacity(
sizes_and_strides.begin(), sizes_and_strides.end());
newCapacity[0] = outer_dim;
auto newNumel = c10::multiply_integers(newCapacity);
if (newNumel * data_type_.itemsize() <= storage_.nbytes()) {
return;
}
// Old data is discarded
storage_.mutable_data_ptr().clear();
auto oldSize = numel_;
SmallVector<int64_t, 5> oldDims(
sizes_and_strides.begin(), sizes_and_strides.end());
Resize(std::move(newCapacity));
// Allocate new memory but don't copy over the data
raw_mutable_data(data_type_);
sizes_and_strides_.set_sizes(oldDims);
numel_ = oldSize;
reserved_ = true;
}
void TensorImpl::Reshape(const std::vector<int64_t>& dims) {
TORCH_CHECK(
is_contiguous_,
"Right now Reshape is only supported for contiguous Tensor.");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Reshape() called on tensor with symbolic shape")
int64_t new_size = 1;
for (auto d : dims) {
TORCH_CHECK(d >= 0);
new_size *= d;
}
TORCH_CHECK(
new_size == numel_,
"New size and old size are not equal. You cannot use Reshape, "
"but should use Resize."
// TODO(jiayq): remove the following warning after pending diffs
// stabilize.
" The old caffe2 mixes Reshape and Resize but this behavior has "
"been changed. If you find this error, most likely you will need "
"to change corresponding code from Reshape to Resize.");
sizes_and_strides_.set_sizes(dims);
empty_tensor_restride(MemoryFormat::Contiguous);
}
void TensorImpl::FreeMemory() {
// We'll detach from the old Storage and create a new one
if (storage_.use_count() != 1 || !storage_.resizable() ||
!storage_.allocator()) {
storage_ = Storage::create_legacy(storage_.device());
} else {
storage_.reset_legacy();
}
storage_offset_ = 0;
}
void TensorImpl::ShareData(const TensorImpl& src) {
// Right now, we are assuming the device_type are the same, since it is
// inherently the same in the non-templatized code. We should probably add
// an assert here which might affect perf a little bit.
TORCH_CHECK(
src.numel_ == numel_,
"Size mismatch - did you call reshape before sharing the data?");
// It is possible that the source tensor hasn't called mutable_data() yet,
// in which case ShareData() doesn't make much sense since we don't really
// know what to share yet.
// TODO: Add the assert after all uninitialized states are eliminated
// TORCH_CHECK(src.dtype_initialized(),
// "Source tensor don't have a data type (did you call
// mutable_data<T> on the tensor?)");
if (!src.dtype_initialized()) {
C10_LOG_EVERY_MS(WARNING, 1000)
<< "Source tensor don't have a data type (did you call mutable_data<T> on the tensor?)";
}
TORCH_CHECK(
src.storage_initialized(),
"Source tensor has no content and has size > 0");
// Finally, do sharing.
/* Since we create new Storage whenever we need to change data_type/nbytes
* this still keeps the original semantics
*/
storage_ = src.storage();
data_type_ = src.dtype();
device_opt_ = src.device_opt();
storage_offset_ = src.storage_offset();
}
void TensorImpl::ShareExternalPointer(
DataPtr&& data_ptr,
const caffe2::TypeMeta data_type,
size_t size_bytes) {
TORCH_CHECK(
data_type != ScalarType::Undefined,
"To share with a raw external pointer you need to pass in an "
"initialized data_type(TypeMeta).");
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"ShareExternalPointer() called on tensor with symbolic shape");
if (!size_bytes) {
size_bytes = numel_ * data_type.itemsize();
}
if (storage_.unique()) {
storage_.UniqueStorageShareExternalPointer(std::move(data_ptr), size_bytes);
data_type_ = data_type;
device_opt_ = storage_.device();
storage_offset_ = 0;
} else {
// Create a new Storage
storage_ = Storage(
Storage::use_byte_size_t(),
size_bytes,
std::move(data_ptr),
/*allocator=*/nullptr,
/*resizable=*/false);
data_type_ = data_type;
device_opt_ = storage_.device();
storage_offset_ = 0;
}
}
static void clone_symvec(SymIntArrayRef src, SymDimVector& dst) {
dst.clear();
dst.reserve(src.size());
for (const auto& i : src) {
dst.emplace_back(i.clone());
}
}
// NB: this doesn't check that the sizes/strides/offset are in bound for the
// storage, and furthermore, it CANNOT do so as in some cases we temporarily
// violate invariants by first setting sizes/strides, and then updating the
// storage
void TensorImpl::set_sizes_and_strides(
c10::SymIntArrayRef sizes,
c10::SymIntArrayRef strides,
std::optional<c10::SymInt> storage_offset) {
auto int_sizes = asIntArrayRefSlowOpt(sizes);
auto int_strides = asIntArrayRefSlowOpt(strides);
if (int_sizes && int_strides &&
// NB: storage_offset guaranteed to be positive
(!storage_offset.has_value() || !storage_offset->is_heap_allocated()) &&
!has_symbolic_sizes_strides_) {
set_sizes_and_strides(*int_sizes, *int_strides);
if (storage_offset.has_value())
set_storage_offset(storage_offset->as_int_unchecked());
return;
}
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_sizes_and_strides ",
err_msg_tensor_metadata_change_not_allowed);
has_symbolic_sizes_strides_ = true;
refresh_sizes_strides_policy();
if (!extra_meta_) {
extra_meta_ = std::make_unique<ExtraMeta>();
extra_meta_->symbolic_shape_meta_ =
std::make_unique<c10::SymbolicShapeMeta>();
extra_meta_->symbolic_shape_meta_->strides_valid_ = !is_sparse();
if (!storage_offset.has_value()) {
extra_meta_->symbolic_shape_meta_->storage_offset_ = storage_offset_;
}
}
auto& sym_shape_meta{symbolic_shape_meta()};
clone_symvec(sizes, sym_shape_meta.sizes_);
clone_symvec(strides, sym_shape_meta.strides_);
if (storage_offset.has_value())
sym_shape_meta.storage_offset_ = storage_offset->clone();
refresh_numel();
refresh_contiguous();
}
void TensorImpl::generic_set_sizes_contiguous(SymIntArrayRef sizes) {
auto int_sizes = asIntArrayRefSlowOpt(sizes);
if (int_sizes.has_value()) {
set_sizes_contiguous(*int_sizes);
return;
}
TORCH_CHECK(
allow_tensor_metadata_change(),
"generic_set_sizes_contiguous ",
err_msg_tensor_metadata_change_not_allowed);
has_symbolic_sizes_strides_ = true;
refresh_sizes_strides_policy();
auto& extra_meta{get_extra_meta()};
if (extra_meta.symbolic_shape_meta_ == nullptr) {
extra_meta_->symbolic_shape_meta_ =
std::make_unique<c10::SymbolicShapeMeta>();
extra_meta_->symbolic_shape_meta_->strides_valid_ = !is_sparse();
}
clone_symvec(sizes, symbolic_shape_meta().sizes_);
refresh_numel();
empty_tensor_restride_symint(
MemoryFormat::Contiguous); // calls refresh_contiguous()
}
void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
TORCH_INTERNAL_ASSERT(has_symbolic_sizes_strides_);
auto& sym_shape_meta{symbolic_shape_meta()};
switch (memory_format) {
case MemoryFormat::Contiguous: {
// TODO: figure out if the non-symint version can also devirtualize;
// the last time we tried it was probably a narrowing problem
const auto dim_ = sym_shape_meta.dim();
sym_shape_meta.strides_.resize(dim_);
if (dim_ > 0) {
const auto last_idx = dim_ - 1;
sym_shape_meta.strides_[last_idx] = c10::SymInt(1);
for (auto i = last_idx - 1; i >= 0; --i) {
sym_shape_meta.strides_[i] = sym_shape_meta.strides_[i + 1] *
sym_shape_meta.sizes_[i + 1].max(1);
}
}
break;
}
case MemoryFormat::ChannelsLast: {
TORCH_CHECK(
dim() == 4, "required rank 4 tensor to use channels_last format");
clone_symvec(
get_channels_last_strides_2d(sym_sizes()), sym_shape_meta.strides_);
break;
}
case MemoryFormat::ChannelsLast3d: {
TORCH_CHECK(
dim() == 5, "required rank 5 tensor to use channels_last_3d format");
clone_symvec(
get_channels_last_strides_3d(sym_sizes()), sym_shape_meta.strides_);
break;
}
case MemoryFormat::Preserve:
TORCH_CHECK(false, "unsupported memory format ", memory_format);
// Cleaning warning messages, no need to break as TORCH_CHECK(false)
// terminates flow.
// break;
case MemoryFormat::NumOptions:
TORCH_INTERNAL_ASSERT(false, "invalid memory format ", memory_format);
}
// recompute contiguous flag, as currently NHWC/NCHW flags are not mutually
// exclusive see #24090
refresh_contiguous();
// hard code some known true settings, for unbacked case
// TODO: avoid chundering into the guards for computing these
switch (memory_format) {
case MemoryFormat::Contiguous: {
sym_shape_meta.assume_contiguous();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
case MemoryFormat::ChannelsLast: {
sym_shape_meta.assume_channels_last_contiguous();
sym_shape_meta.assume_channels_last();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
case MemoryFormat::ChannelsLast3d: {
sym_shape_meta.assume_channels_last_3d_contiguous();
sym_shape_meta.assume_channels_last_3d();
sym_shape_meta.assume_non_overlapping_and_dense();
break;
}
default:
break;
}
}
namespace impl {
namespace {
AutogradMetaFactory* meta_factory = nullptr;
} // namespace
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
meta_factory = factory;
}
AutogradMetaFactory* GetAutogradMetaFactory() {
TORCH_CHECK(
meta_factory,
"Support for autograd has not been loaded; have you linked against libtorch.so?")
return meta_factory;
}
} // namespace impl
} // namespace c10