mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Approved by: https://github.com/ezyang
Test Plan:
contbuild & OSS CI, see e444cd24d4
Rollback Plan:
Differential Revision: D80435179
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
This folder contains a number of scripts which are used as
part of the PyTorch build process. This directory also doubles
as a Python module hierarchy (thus the __init__.py
).
Overview
Modern infrastructure:
- autograd - Code generation for autograd. This includes definitions of all our derivatives.
- jit - Code generation for JIT
- shared - Generic infrastructure that scripts in
tools may find useful.
- module_loader.py - Makes it easier to import arbitrary Python files in a script, without having to add them to the PYTHONPATH first.
Build system pieces:
- setup_helpers - Helper code for searching for third-party dependencies on the user system.
- build_pytorch_libs.py - cross-platform script that builds all of the constituent libraries of PyTorch, but not the PyTorch Python extension itself.
- build_libtorch.py - Script for building libtorch, a standalone C++ library without Python support. This build script is tested in CI.
Developer tools which you might find useful:
- git_add_generated_dirs.sh and git_reset_generated_dirs.sh - Use this to force add generated files to your Git index, so that you can conveniently run diffs on them when working on code-generation. (See also generated_dirs.txt which specifies the list of directories with generated files.)
Important if you want to run on AMD GPU:
- amd_build - HIPify scripts, for transpiling CUDA
into AMD HIP. Right now, PyTorch and Caffe2 share logic for how to
do this transpilation, but have separate entry-points for transpiling
either PyTorch or Caffe2 code.
- build_amd.py - Top-level entry point for HIPifying our codebase.
Tools which are only situationally useful:
- docker - Dockerfile for running (but not developing) PyTorch, using the official conda binary distribution. Context: https://github.com/pytorch/pytorch/issues/1619
- download_mnist.py - Download the MNIST dataset; this is necessary if you want to run the C++ API tests.