mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument. In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too. Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872 Differential Revision: D21740237 Pulled By: mruberry fbshipit-source-id: acbc027aa1d7877a49664d94db9a5fff91a07042
738 lines
30 KiB
Python
738 lines
30 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import io
|
|
import numpy as np
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import unittest
|
|
import uuid
|
|
|
|
TEST_TENSORBOARD = True
|
|
try:
|
|
import tensorboard.summary.writer.event_file_writer # noqa F401
|
|
from tensorboard.compat.proto.summary_pb2 import Summary
|
|
except ImportError:
|
|
TEST_TENSORBOARD = False
|
|
|
|
HAS_TORCHVISION = True
|
|
try:
|
|
import torchvision
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
|
|
|
|
TEST_CAFFE2 = True
|
|
try:
|
|
from caffe2.python import brew, cnn, core, workspace
|
|
from caffe2.python.model_helper import ModelHelper
|
|
except ImportError:
|
|
TEST_CAFFE2 = False
|
|
skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
|
|
|
|
TEST_MATPLOTLIB = True
|
|
try:
|
|
import matplotlib
|
|
if os.environ.get('DISPLAY', '') == '':
|
|
matplotlib.use('Agg')
|
|
import matplotlib.pyplot as plt
|
|
except ImportError:
|
|
TEST_MATPLOTLIB = False
|
|
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN
|
|
|
|
def tensor_N(shape, dtype=float):
|
|
numel = np.prod(shape)
|
|
x = (np.arange(numel, dtype=dtype)).reshape(shape)
|
|
return x
|
|
|
|
class BaseTestCase(TestCase):
|
|
""" Base class used for all TensorBoard tests """
|
|
def setUp(self):
|
|
if not TEST_TENSORBOARD:
|
|
return self.skipTest("Skip the test since TensorBoard is not installed")
|
|
self.temp_dirs = []
|
|
|
|
def createSummaryWriter(self):
|
|
temp_dir = str(uuid.uuid4())
|
|
self.temp_dirs.append(temp_dir)
|
|
return SummaryWriter(temp_dir)
|
|
|
|
def tearDown(self):
|
|
super(BaseTestCase, self).tearDown()
|
|
# Remove directories created by SummaryWriter
|
|
for temp_dir in self.temp_dirs:
|
|
if os.path.exists(temp_dir):
|
|
shutil.rmtree(temp_dir)
|
|
|
|
|
|
if TEST_TENSORBOARD:
|
|
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
|
from torch.utils.tensorboard import summary, SummaryWriter
|
|
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
|
|
from torch.utils.tensorboard._convert_np import make_np
|
|
from torch.utils.tensorboard import _caffe2_graph as c2_graph
|
|
from torch.utils.tensorboard._pytorch_graph import graph
|
|
from google.protobuf import text_format
|
|
from PIL import Image
|
|
|
|
class TestTensorBoardPyTorchNumpy(BaseTestCase):
|
|
def test_pytorch_np(self):
|
|
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
|
|
for tensor in tensors:
|
|
# regular tensor
|
|
self.assertIsInstance(make_np(tensor), np.ndarray)
|
|
|
|
# CUDA tensor
|
|
if torch.cuda.device_count() > 0:
|
|
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
|
|
|
|
# regular variable
|
|
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
|
|
|
|
# CUDA variable
|
|
if torch.cuda.device_count() > 0:
|
|
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
|
|
|
|
# python primitive type
|
|
self.assertIsInstance(make_np(0), np.ndarray)
|
|
self.assertIsInstance(make_np(0.1), np.ndarray)
|
|
|
|
def test_pytorch_autograd_np(self):
|
|
x = torch.autograd.Variable(torch.Tensor(1))
|
|
self.assertIsInstance(make_np(x), np.ndarray)
|
|
|
|
def test_pytorch_write(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
|
|
|
|
def test_pytorch_histogram(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_histogram('float histogram', torch.rand((50,)))
|
|
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
|
|
|
|
def test_pytorch_histogram_raw(self):
|
|
with self.createSummaryWriter() as w:
|
|
num = 50
|
|
floats = make_np(torch.rand((num,)))
|
|
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
|
|
counts, limits = np.histogram(floats, bins)
|
|
sum_sq = floats.dot(floats).item()
|
|
w.add_histogram_raw('float histogram raw',
|
|
min=floats.min().item(),
|
|
max=floats.max().item(),
|
|
num=num,
|
|
sum=floats.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
ints = make_np(torch.randint(0, 100, (num,)))
|
|
bins = [0, 25, 50, 75, 100]
|
|
counts, limits = np.histogram(ints, bins)
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw('int histogram raw',
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
ints = torch.tensor(range(0, 100)).float()
|
|
nbins = 100
|
|
counts = torch.histc(ints, bins=nbins, min=0, max=99)
|
|
limits = torch.tensor(range(nbins))
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw('int histogram raw',
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits.tolist(),
|
|
bucket_counts=counts.tolist())
|
|
|
|
class TestTensorBoardUtils(BaseTestCase):
|
|
def test_to_HWC(self):
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'chw')
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'nchw')
|
|
self.assertEqual(converted.shape, (64, 256, 3))
|
|
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, 'hw')
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
|
|
def test_convert_to_HWC_dtype_remains_same(self):
|
|
# test to ensure convert_to_HWC restores the dtype of input np array and
|
|
# thus the scale_factor calculated for the image is 1
|
|
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
|
|
tensor = make_np(test_image)
|
|
tensor = convert_to_HWC(tensor, 'NCHW')
|
|
scale_factor = summary._calc_scale_factor(tensor)
|
|
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
|
|
|
|
|
|
def test_prepare_video(self):
|
|
# At each timeframe, the sum over all other
|
|
# dimensions of the video should be the same.
|
|
shapes = [
|
|
(16, 30, 3, 28, 28),
|
|
(36, 30, 3, 28, 28),
|
|
(19, 29, 3, 23, 19),
|
|
(3, 3, 3, 3, 3)
|
|
]
|
|
for s in shapes:
|
|
V_input = np.random.random(s)
|
|
V_after = _prepare_video(np.copy(V_input))
|
|
total_frame = s[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
def test_numpy_vid_uint8(self):
|
|
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
|
|
V_after = _prepare_video(np.copy(V_input)) * 255
|
|
total_frame = V_input.shape[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
|
|
|
|
true_positive_counts = [75, 64, 21, 5, 0]
|
|
false_positive_counts = [150, 105, 18, 0, 0]
|
|
true_negative_counts = [0, 45, 132, 150, 150]
|
|
false_negative_counts = [0, 11, 54, 70, 75]
|
|
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
|
|
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
|
|
|
|
class TestTensorBoardWriter(BaseTestCase):
|
|
def test_writer(self):
|
|
with self.createSummaryWriter() as writer:
|
|
sample_rate = 44100
|
|
|
|
n_iter = 0
|
|
writer.add_hparams(
|
|
{'lr': 0.1, 'bsize': 1},
|
|
{'hparam/accuracy': 10, 'hparam/loss': 10}
|
|
)
|
|
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
|
|
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
|
|
writer.add_scalars('data/scalar_group', {
|
|
"xsinx": n_iter * np.sin(n_iter),
|
|
"xcosx": n_iter * np.cos(n_iter),
|
|
"arctanx": np.arctan(n_iter)
|
|
}, n_iter)
|
|
x = np.zeros((32, 3, 64, 64)) # output from network
|
|
writer.add_images('Image', x, n_iter) # Tensor
|
|
writer.add_image_with_boxes('imagebox',
|
|
np.zeros((3, 64, 64)),
|
|
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
|
|
n_iter)
|
|
x = np.zeros(sample_rate * 2)
|
|
|
|
writer.add_audio('myAudio', x, n_iter)
|
|
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
|
|
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
|
|
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
|
|
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
|
|
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
|
|
100), n_iter) # needs tensorboard 0.4RC or later
|
|
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
|
|
false_positive_counts,
|
|
true_negative_counts,
|
|
false_negative_counts,
|
|
precision,
|
|
recall, n_iter)
|
|
|
|
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
|
|
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f)
|
|
|
|
class TestTensorBoardSummaryWriter(BaseTestCase):
|
|
def test_summary_writer_ctx(self):
|
|
# after using a SummaryWriter as a ctx it should be closed
|
|
with self.createSummaryWriter() as writer:
|
|
writer.add_scalar('test', 1)
|
|
self.assertIs(writer.file_writer, None)
|
|
|
|
def test_summary_writer_close(self):
|
|
# Opening and closing SummaryWriter a lot should not run into
|
|
# OSError: [Errno 24] Too many open files
|
|
passed = True
|
|
try:
|
|
writer = self.createSummaryWriter()
|
|
writer.close()
|
|
except OSError:
|
|
passed = False
|
|
|
|
self.assertTrue(passed)
|
|
|
|
def test_pathlib(self):
|
|
import pathlib
|
|
p = pathlib.Path('./pathlibtest' + str(uuid.uuid4()))
|
|
with SummaryWriter(p) as writer:
|
|
writer.add_scalar('test', 1)
|
|
import shutil
|
|
shutil.rmtree(str(p))
|
|
|
|
class TestTensorBoardEmbedding(BaseTestCase):
|
|
def test_embedding(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
|
|
all_labels = torch.Tensor([33, 44, 55])
|
|
all_images = torch.zeros(3, 3, 5, 5)
|
|
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
global_step=2)
|
|
|
|
dataset_label = ['test'] * 2 + ['train'] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=['digit', 'dataset'],
|
|
global_step=2)
|
|
# assert...
|
|
|
|
def test_embedding_64(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
|
|
all_labels = torch.Tensor([33, 44, 55])
|
|
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
|
|
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
global_step=2)
|
|
|
|
dataset_label = ['test'] * 2 + ['train'] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=['digit', 'dataset'],
|
|
global_step=2)
|
|
|
|
class TestTensorBoardSummary(BaseTestCase):
|
|
def test_uint8_image(self):
|
|
'''
|
|
Tests that uint8 image (pixel values in [0, 255]) is not changed
|
|
'''
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
|
|
|
|
def test_float32_image(self):
|
|
'''
|
|
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
|
|
to [0, 255]
|
|
'''
|
|
test_image = np.random.rand(3, 32, 32).astype(np.float32)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255')
|
|
|
|
def test_list_input(self):
|
|
with self.assertRaises(Exception) as e_info:
|
|
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
|
|
|
|
def test_empty_input(self):
|
|
with self.assertRaises(Exception) as e_info:
|
|
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
|
|
|
|
def test_image_with_boxes(self):
|
|
self.assertTrue(compare_image_proto(summary.image_boxes('dummy',
|
|
tensor_N(shape=(3, 32, 32)),
|
|
np.array([[10, 10, 40, 40]])),
|
|
self))
|
|
|
|
def test_image_with_one_channel(self):
|
|
self.assertTrue(compare_image_proto(summary.image('dummy',
|
|
tensor_N(shape=(1, 8, 8)),
|
|
dataformats='CHW'),
|
|
self)) # noqa E127
|
|
|
|
def test_image_with_one_channel_batched(self):
|
|
self.assertTrue(compare_image_proto(summary.image('dummy',
|
|
tensor_N(shape=(2, 1, 8, 8)),
|
|
dataformats='NCHW'),
|
|
self)) # noqa E127
|
|
|
|
def test_image_with_3_channel_batched(self):
|
|
self.assertTrue(compare_image_proto(summary.image('dummy',
|
|
tensor_N(shape=(2, 3, 8, 8)),
|
|
dataformats='NCHW'),
|
|
self)) # noqa E127
|
|
|
|
def test_image_without_channel(self):
|
|
self.assertTrue(compare_image_proto(summary.image('dummy',
|
|
tensor_N(shape=(8, 8)),
|
|
dataformats='HW'),
|
|
self)) # noqa E127
|
|
|
|
def test_video(self):
|
|
try:
|
|
import moviepy # noqa F401
|
|
except ImportError:
|
|
return
|
|
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
|
|
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
|
|
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
|
|
|
|
def test_audio(self):
|
|
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
|
|
|
|
def test_text(self):
|
|
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
|
|
|
|
def test_histogram_auto(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
|
|
|
|
def test_histogram_fd(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
|
|
|
|
def test_histogram_doane(self):
|
|
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
|
|
|
|
def test_custom_scalars(self):
|
|
layout = {
|
|
'Taiwan': {
|
|
'twse': ['Multiline', ['twse/0050', 'twse/2330']]
|
|
},
|
|
'USA': {
|
|
'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
|
|
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]
|
|
}
|
|
}
|
|
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
|
|
|
|
def test_hparams_smoke(self):
|
|
hp = {'lr': 0.1, 'bsize': 4}
|
|
mt = {'accuracy': 0.1, 'loss': 10}
|
|
summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
|
|
|
|
hp = {'use_magic': True, 'init_string': "42"}
|
|
mt = {'accuracy': 0.1, 'loss': 10}
|
|
summary.hparams(hp, mt)
|
|
|
|
mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)}
|
|
summary.hparams(hp, mt)
|
|
|
|
def test_hparams_wrong_parameter(self):
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams([], {})
|
|
with self.assertRaises(TypeError):
|
|
summary.hparams({}, [])
|
|
with self.assertRaises(ValueError):
|
|
res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0})
|
|
# metric data is used in writer.py so the code path is different, which leads to different exception type.
|
|
with self.assertRaises(NotImplementedError):
|
|
with self.createSummaryWriter() as writer:
|
|
writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
|
|
|
|
def test_hparams_number(self):
|
|
hp = {'lr': 0.1}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_hparams_bool(self):
|
|
hp = {'bool_var': True}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_hparams_string(self):
|
|
hp = {'string_var': "hi"}
|
|
mt = {'accuracy': 0.1}
|
|
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
|
|
|
|
def test_mesh(self):
|
|
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
|
|
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None)
|
|
self.assertTrue(compare_proto(mesh, self))
|
|
|
|
def remove_whitespace(string):
|
|
return string.replace(' ', '').replace('\t', '').replace('\n', '')
|
|
|
|
def get_expected_file(function_ptr):
|
|
module_id = function_ptr.__class__.__module__
|
|
test_file = sys.modules[module_id].__file__
|
|
# Look for the .py file (since __file__ could be pyc).
|
|
test_file = ".".join(test_file.split('.')[:-1]) + '.py'
|
|
|
|
# Use realpath to follow symlinks appropriately.
|
|
test_dir = os.path.dirname(os.path.realpath(test_file))
|
|
functionName = function_ptr.id().split('.')[-1]
|
|
return os.path.join(test_dir,
|
|
"expect",
|
|
'TestTensorBoard.' + functionName + ".expect")
|
|
|
|
def read_expected_content(function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
assert os.path.exists(expected_file)
|
|
with open(expected_file, "r") as f:
|
|
return f.read()
|
|
|
|
def compare_image_proto(actual_proto, function_ptr):
|
|
expected_str = read_expected_content(function_ptr)
|
|
expected_proto = Summary()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
[actual, expected] = [actual_proto.value[0], expected_proto.value[0]]
|
|
actual_img = Image.open(io.BytesIO(actual.image.encoded_image_string))
|
|
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
|
|
|
|
return (
|
|
actual.tag == expected.tag and
|
|
actual.image.height == expected.image.height and
|
|
actual.image.width == expected.image.width and
|
|
actual.image.colorspace == expected.image.colorspace and
|
|
actual_img == expected_img
|
|
)
|
|
|
|
def compare_proto(str_to_compare, function_ptr):
|
|
expected = read_expected_content(function_ptr)
|
|
str_to_compare = str(str_to_compare)
|
|
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
|
|
|
|
def write_proto(str_to_compare, function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
with open(expected_file, 'w') as f:
|
|
f.write(str(str_to_compare))
|
|
|
|
class TestTensorBoardPytorchGraph(BaseTestCase):
|
|
def test_pytorch_graph(self):
|
|
dummy_input = (torch.zeros(1, 3),)
|
|
|
|
class myLinear(torch.nn.Module):
|
|
def __init__(self):
|
|
super(myLinear, self).__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return self.l(x)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myLinear(), dummy_input)
|
|
|
|
actual_proto, _ = graph(myLinear(), dummy_input)
|
|
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = GraphDef()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
self.assertEquals(len(expected_proto.node), len(actual_proto.node))
|
|
for i in range(len(expected_proto.node)):
|
|
expected_node = expected_proto.node[i]
|
|
actual_node = actual_proto.node[i]
|
|
self.assertEquals(expected_node.name, actual_node.name)
|
|
self.assertEquals(expected_node.op, actual_node.op)
|
|
self.assertEquals(expected_node.input, actual_node.input)
|
|
self.assertEquals(expected_node.device, actual_node.device)
|
|
self.assertEquals(
|
|
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
|
|
|
|
def test_mlp_graph(self):
|
|
dummy_input = (torch.zeros(2, 1, 28, 28),)
|
|
|
|
# This MLP class with the above input is expected
|
|
# to fail JIT optimizations as seen at
|
|
# https://github.com/pytorch/pytorch/issues/18903
|
|
#
|
|
# However, it should not raise an error during
|
|
# the add_graph call and still continue.
|
|
class myMLP(torch.nn.Module):
|
|
def __init__(self):
|
|
super(myMLP, self).__init__()
|
|
self.input_len = 1 * 28 * 28
|
|
self.fc1 = torch.nn.Linear(self.input_len, 1200)
|
|
self.fc2 = torch.nn.Linear(1200, 1200)
|
|
self.fc3 = torch.nn.Linear(1200, 10)
|
|
|
|
def forward(self, x, update_batch_stats=True):
|
|
h = torch.nn.functional.relu(
|
|
self.fc1(x.view(-1, self.input_len)))
|
|
h = self.fc2(h)
|
|
h = torch.nn.functional.relu(h)
|
|
h = self.fc3(h)
|
|
return h
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myMLP(), dummy_input)
|
|
|
|
def test_wrong_input_size(self):
|
|
with self.assertRaises(RuntimeError) as e_info:
|
|
dummy_input = torch.rand(1, 9)
|
|
model = torch.nn.Linear(3, 5)
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(model, dummy_input) # error
|
|
|
|
@skipIfNoTorchVision
|
|
def test_torchvision_smoke(self):
|
|
model_input_shapes = {
|
|
'alexnet': (2, 3, 224, 224),
|
|
'resnet34': (2, 3, 224, 224),
|
|
'resnet152': (2, 3, 224, 224),
|
|
'densenet121': (2, 3, 224, 224),
|
|
'vgg16': (2, 3, 224, 224),
|
|
'vgg19': (2, 3, 224, 224),
|
|
'vgg16_bn': (2, 3, 224, 224),
|
|
'vgg19_bn': (2, 3, 224, 224),
|
|
'mobilenet_v2': (2, 3, 224, 224),
|
|
}
|
|
for model_name, input_shape in model_input_shapes.items():
|
|
with self.createSummaryWriter() as w:
|
|
model = getattr(torchvision.models, model_name)()
|
|
w.add_graph(model, torch.zeros(input_shape))
|
|
|
|
class TestTensorBoardFigure(BaseTestCase):
|
|
@skipIfNoMatplotlib
|
|
def test_figure(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figure, axes = plt.figure(), plt.gca()
|
|
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
|
|
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
|
|
axes.add_patch(circle1)
|
|
axes.add_patch(circle2)
|
|
plt.axis('scaled')
|
|
plt.tight_layout()
|
|
|
|
writer.add_figure("add_figure/figure", figure, 0, close=False)
|
|
self.assertTrue(plt.fignum_exists(figure.number))
|
|
|
|
writer.add_figure("add_figure/figure", figure, 1)
|
|
self.assertFalse(plt.fignum_exists(figure.number))
|
|
|
|
writer.close()
|
|
|
|
@skipIfNoMatplotlib
|
|
def test_figure_list(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figures = []
|
|
for i in range(5):
|
|
figure = plt.figure()
|
|
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
|
|
plt.xlabel("X")
|
|
plt.xlabel("Y")
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
figures.append(figure)
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
|
|
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa F812
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 1)
|
|
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa F812
|
|
|
|
writer.close()
|
|
|
|
class TestTensorBoardNumpy(BaseTestCase):
|
|
def test_scalar(self):
|
|
res = make_np(1.1)
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(1 << 64 - 1) # uint64_max
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float16(1.00000087))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float128(1.00008 + 9))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.int64(100000000000))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_np(self):
|
|
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
|
|
self.assertIsInstance(make_np('testBlob'), np.ndarray)
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_np_expect_fail(self):
|
|
with self.assertRaises(RuntimeError):
|
|
res = make_np('This_blob_does_not_exist')
|
|
|
|
def test_pytorch_np_expect_fail(self):
|
|
with self.assertRaises(NotImplementedError):
|
|
res = make_np({'pytorch': 1.0})
|
|
|
|
@skipIfNoCaffe2
|
|
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
|
|
def test_caffe2_simple_model(self):
|
|
model = ModelHelper(name="mnist")
|
|
# how come those inputs don't break the forward pass =.=a
|
|
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
|
|
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
|
|
|
|
with core.NameScope("conv1"):
|
|
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
|
|
# Image size: 24 x 24 -> 12 x 12
|
|
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
|
|
# Image size: 12 x 12 -> 8 x 8
|
|
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
|
|
# Image size: 8 x 8 -> 4 x 4
|
|
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
|
|
with core.NameScope("classifier"):
|
|
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
|
|
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
|
|
relu = brew.relu(model, fc3, fc3)
|
|
pred = brew.fc(model, relu, 'pred', 500, 10)
|
|
softmax = brew.softmax(model, pred, 'softmax')
|
|
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
|
|
# compute the expected loss
|
|
loss = model.AveragedLoss(xent, "loss")
|
|
model.net.RunAllOnMKL()
|
|
model.param_init_net.RunAllOnMKL()
|
|
model.AddGradientOperators([loss], skip=1)
|
|
blob_name_tracker = {}
|
|
graph = c2_graph.model_to_graph_def(
|
|
model,
|
|
blob_name_tracker=blob_name_tracker,
|
|
shapes={},
|
|
show_simplified=False,
|
|
)
|
|
compare_proto(graph, self)
|
|
|
|
@skipIfNoCaffe2
|
|
def test_caffe2_simple_cnnmodel(self):
|
|
model = cnn.CNNModelHelper("NCHW", name="overfeat")
|
|
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
|
|
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
|
|
with core.NameScope("conv1"):
|
|
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
|
|
relu1 = model.Relu(conv1, conv1)
|
|
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
|
|
with core.NameScope("classifier"):
|
|
fc = model.FC(pool1, "fc", 4096, 1000)
|
|
pred = model.Softmax(fc, "pred")
|
|
xent = model.LabelCrossEntropy([pred, "label"], "xent")
|
|
loss = model.AveragedLoss(xent, "loss")
|
|
|
|
blob_name_tracker = {}
|
|
graph = c2_graph.model_to_graph_def(
|
|
model,
|
|
blob_name_tracker=blob_name_tracker,
|
|
shapes={},
|
|
show_simplified=False,
|
|
)
|
|
compare_proto(graph, self)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|