mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument. In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too. Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872 Differential Revision: D21740237 Pulled By: mruberry fbshipit-source-id: acbc027aa1d7877a49664d94db9a5fff91a07042
177 lines
7.0 KiB
Python
177 lines
7.0 KiB
Python
import os
|
|
import unittest
|
|
|
|
import torch.testing._internal.common_utils as common
|
|
from torch.testing._internal.common_utils import IS_WINDOWS
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
import torch
|
|
import torch.backends.cudnn
|
|
import torch.utils.cpp_extension
|
|
|
|
try:
|
|
import torch_test_cpp_extension.cpp as cpp_extension
|
|
import torch_test_cpp_extension.msnpu as msnpu_extension
|
|
import torch_test_cpp_extension.rng as rng_extension
|
|
except ImportError:
|
|
raise RuntimeError(
|
|
"test_cpp_extensions_aot.py cannot be invoked directly. Run "
|
|
"`python run_test.py -i test_cpp_extensions_aot_ninja` instead."
|
|
)
|
|
|
|
|
|
class TestCppExtensionAOT(common.TestCase):
|
|
"""Tests ahead-of-time cpp extensions
|
|
|
|
NOTE: run_test.py's test_cpp_extensions_aot_ninja target
|
|
also runs this test case, but with ninja enabled. If you are debugging
|
|
a test failure here from the CI, check the logs for which target
|
|
(test_cpp_extensions_aot_no_ninja vs test_cpp_extensions_aot_ninja)
|
|
failed.
|
|
"""
|
|
|
|
def test_extension_function(self):
|
|
x = torch.randn(4, 4)
|
|
y = torch.randn(4, 4)
|
|
z = cpp_extension.sigmoid_add(x, y)
|
|
self.assertEqual(z, x.sigmoid() + y.sigmoid())
|
|
|
|
def test_extension_module(self):
|
|
mm = cpp_extension.MatrixMultiplier(4, 8)
|
|
weights = torch.rand(8, 4, dtype=torch.double)
|
|
expected = mm.get().mm(weights)
|
|
result = mm.forward(weights)
|
|
self.assertEqual(expected, result)
|
|
|
|
def test_backward(self):
|
|
mm = cpp_extension.MatrixMultiplier(4, 8)
|
|
weights = torch.rand(8, 4, dtype=torch.double, requires_grad=True)
|
|
result = mm.forward(weights)
|
|
result.sum().backward()
|
|
tensor = mm.get()
|
|
|
|
expected_weights_grad = tensor.t().mm(torch.ones([4, 4], dtype=torch.double))
|
|
self.assertEqual(weights.grad, expected_weights_grad)
|
|
|
|
expected_tensor_grad = torch.ones([4, 4], dtype=torch.double).mm(weights.t())
|
|
self.assertEqual(tensor.grad, expected_tensor_grad)
|
|
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
def test_cuda_extension(self):
|
|
import torch_test_cpp_extension.cuda as cuda_extension
|
|
|
|
x = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
y = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
|
|
z = cuda_extension.sigmoid_add(x, y).cpu()
|
|
|
|
# 2 * sigmoid(0) = 2 * 0.5 = 1
|
|
self.assertEqual(z, torch.ones_like(z))
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Not available on Windows")
|
|
def test_no_python_abi_suffix_sets_the_correct_library_name(self):
|
|
# For this test, run_test.py will call `python setup.py install` in the
|
|
# cpp_extensions/no_python_abi_suffix_test folder, where the
|
|
# `BuildExtension` class has a `no_python_abi_suffix` option set to
|
|
# `True`. This *should* mean that on Python 3, the produced shared
|
|
# library does not have an ABI suffix like
|
|
# "cpython-37m-x86_64-linux-gnu" before the library suffix, e.g. "so".
|
|
root = os.path.join("cpp_extensions", "no_python_abi_suffix_test", "build")
|
|
matches = [f for _, _, fs in os.walk(root) for f in fs if f.endswith("so")]
|
|
self.assertEqual(len(matches), 1, msg=str(matches))
|
|
self.assertEqual(matches[0], "no_python_abi_suffix_test.so", msg=str(matches))
|
|
|
|
def test_optional(self):
|
|
has_value = cpp_extension.function_taking_optional(torch.ones(5))
|
|
self.assertTrue(has_value)
|
|
has_value = cpp_extension.function_taking_optional(None)
|
|
self.assertFalse(has_value)
|
|
|
|
|
|
class TestMSNPUTensor(common.TestCase):
|
|
def test_unregistered(self):
|
|
a = torch.arange(0, 10, device='cpu')
|
|
with self.assertRaisesRegex(RuntimeError, "Could not run"):
|
|
b = torch.arange(0, 10, device='msnpu')
|
|
|
|
def test_zeros(self):
|
|
a = torch.empty(5, 5, device='cpu')
|
|
self.assertEqual(a.device, torch.device('cpu'))
|
|
|
|
b = torch.empty(5, 5, device='msnpu')
|
|
self.assertEqual(b.device, torch.device('msnpu', 0))
|
|
self.assertEqual(msnpu_extension.get_test_int(), 0)
|
|
self.assertEqual(torch.get_default_dtype(), b.dtype)
|
|
|
|
c = torch.empty((5, 5), dtype=torch.int64, device='msnpu')
|
|
self.assertEqual(msnpu_extension.get_test_int(), 0)
|
|
self.assertEqual(torch.int64, c.dtype)
|
|
|
|
def test_add(self):
|
|
a = torch.empty(5, 5, device='msnpu', requires_grad=True)
|
|
self.assertEqual(msnpu_extension.get_test_int(), 0)
|
|
|
|
b = torch.empty(5, 5, device='msnpu')
|
|
self.assertEqual(msnpu_extension.get_test_int(), 0)
|
|
|
|
c = a + b
|
|
self.assertEqual(msnpu_extension.get_test_int(), 1)
|
|
|
|
def test_conv_backend_override(self):
|
|
# To simplify tests, we use 4d input here to avoid doing view4d( which
|
|
# needs more overrides) in _convolution.
|
|
input = torch.empty(2, 4, 10, 2, device='msnpu', requires_grad=True)
|
|
weight = torch.empty(6, 4, 2, 2, device='msnpu', requires_grad=True)
|
|
bias = torch.empty(6, device='msnpu')
|
|
|
|
# Make sure forward is overriden
|
|
out = torch.nn.functional.conv1d(input, weight, bias, 2, 0, 1, 1)
|
|
self.assertEqual(msnpu_extension.get_test_int(), 2)
|
|
self.assertEqual(out.shape[0], input.shape[0])
|
|
self.assertEqual(out.shape[1], weight.shape[0])
|
|
|
|
# Make sure backward is overriden
|
|
# Double backward is dispatched to _convolution_double_backward.
|
|
# It is not tested here as it involves more computation/overrides.
|
|
grad = torch.autograd.grad(out, input, out, create_graph=True)
|
|
self.assertEqual(msnpu_extension.get_test_int(), 3)
|
|
self.assertEqual(grad[0].shape, input.shape)
|
|
|
|
|
|
class TestRNGExtension(common.TestCase):
|
|
|
|
def setUp(self):
|
|
super(TestRNGExtension, self).setUp()
|
|
rng_extension.registerOps()
|
|
|
|
def test_rng(self):
|
|
fourty_two = torch.full((10,), 42, dtype=torch.int64)
|
|
|
|
t = torch.empty(10, dtype=torch.int64).random_()
|
|
self.assertNotEqual(t, fourty_two)
|
|
|
|
gen = torch.Generator(device='cpu')
|
|
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
|
|
self.assertNotEqual(t, fourty_two)
|
|
|
|
self.assertEqual(rng_extension.getInstanceCount(), 0)
|
|
gen = rng_extension.createTestCPUGenerator(42)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
copy = gen
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(gen, copy)
|
|
copy2 = rng_extension.identity(copy)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(gen, copy2)
|
|
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(t, fourty_two)
|
|
del gen
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
del copy
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
del copy2
|
|
self.assertEqual(rng_extension.getInstanceCount(), 0)
|
|
|
|
if __name__ == "__main__":
|
|
common.run_tests()
|