Files
pytorch/test/test_decomp.py
Edward Z. Yang a6fa4f9c28 Do not decompose in functionalization/proxy tensor if autograd wouldn't have decomposed (#164939)
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition.  You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.

This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.

Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
2025-10-10 00:15:00 +00:00

1397 lines
54 KiB
Python

# Owner(s): ["module: decompositions"]
import functools
import itertools
import re
import unittest
from collections import defaultdict
from functools import partial
import torch._inductor.decomposition
import torch.autograd
from torch import Tensor
from torch._decomp import core_aten_decompositions, decomposition_table
from torch._dispatch.python import enable_python_dispatcher
from torch._export.utils import _is_cia_op
from torch._ops import DispatchKey
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import SM70OrLater, tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
onlyNativeDeviceTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
skip,
skipOps,
xfail,
)
from torch.testing._internal.common_modules import module_db, modules
from torch.testing._internal.common_utils import (
is_iterable_of_tensors,
run_tests,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_WITH_ASAN,
TEST_WITH_SLOW,
TestCase,
unMarkDynamoStrictTest,
)
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
aten = torch.ops.aten
# TODO: this isn't going to work with non-aten namespaces
def overload_to_aten_name(op):
return op._schema.name.split("::")[1]
# All operators that can have decomp tests
decomposition_names = {
overload_to_aten_name(k)
for k in decomposition_table
if isinstance(k, torch._ops.OpOverload)
}
core_decomposition_names = {
overload_to_aten_name(k)
for k in core_aten_decompositions()
if isinstance(k, torch._ops.OpOverload) and not _is_cia_op(k)
}
_decomp_test_ops = [
op
for op in op_db
if op.aten_name in decomposition_names
or op.aten_backward_name in decomposition_names
]
_decomp_test_ops_core_autograd = [
op
for op in op_db
if op.aten_name in core_decomposition_names and op.supports_autograd
]
_sdpa_op_info = [op for op in op_db if "scaled_dot_product_attention" in op.aten_name]
def diff_arg(arg, requires_grad=True):
def is_differentiable_arg(arg):
if requires_grad:
return arg.requires_grad
else:
return arg.is_floating_point() or arg.is_complex()
if is_iterable_of_tensors(arg):
if all(is_differentiable_arg(a) for a in arg):
return True
if all(not is_differentiable_arg(a) for a in arg):
return False
raise RuntimeError("NYI: The test runner can't handle this")
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
# Version of autograd.grad with some differences:
# - pytree inputs is allowed (but leaves of the pytree have to all
# be tensors)
# - if an input is not used as part of derivatives, we will return a
# zero-filled tensor for the result
def _autograd_grad(
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
inputs, inputs_spec = tree_flatten(inputs)
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
if grad_outputs is None:
diff_outputs = tuple(out for out in outputs if out.requires_grad)
else:
diff_grad_outputs = [
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
]
if len(diff_grad_outputs) == 0:
diff_outputs, grad_outputs = (), ()
else:
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=True,
)
result = []
grad_inputs_iter = iter(grad_inputs)
for inp in inputs:
if inp.requires_grad:
grad_input = next(grad_inputs_iter)
if grad_input is None:
result.append(torch.zeros_like(inp))
else:
result.append(grad_input)
else:
result.append(torch.zeros_like(inp))
return tree_unflatten(result, inputs_spec)
def _as_tuple(val):
if isinstance(val, tuple):
return val
return (val,)
def ref_vjp_no_create(f, *primals):
result = f(*primals)
def wrapped(cotangents):
return _autograd_grad(
_as_tuple(result),
primals,
_as_tuple(cotangents),
create_graph=False,
retain_graph=True,
)
return result, wrapped
dtype_precisions = {
torch.float16: (0.001, 1e-5),
torch.bfloat16: (0.016, 1e-4),
torch.float32: (1.3e-6, 1e-5),
torch.float64: (1e-7, 1e-7),
torch.complex32: (0.001, 1e-5),
torch.complex64: (1.3e-6, 1e-5),
torch.complex128: (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(dtype0, dtype1):
rtol = max(
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
)
atol = max(
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
)
return rtol, atol
def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs):
assert orig.dtype == decomp.dtype, f"{i} Operation: {op}"
if orig.numel() == 0 or decomp.numel() == 0:
assert orig.numel() == decomp.numel()
return
assert orig.shape == decomp.shape, f"{i} Operation: {op}"
tol_table = {
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3,
(torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2,
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.bfloat16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.float16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.bfloat16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.nll_loss_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss_forward.default): 1e-1,
(torch.float16, torch.ops.aten.nll_loss2d_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss2d_forward.default): 2e-1,
(torch.float16, torch.ops.aten.hardswish.default): 2e-7,
(torch.bfloat16, torch.ops.aten.hardswish.default): 2e-7,
(torch.float16, torch.ops.aten.multi_margin_loss.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multi_margin_loss.default): 5e-2,
(torch.float16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.float16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad3d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad3d_backward.default): 5e-2,
# see https://github.com/pytorch/pytorch/pull/96264
(torch.float16, torch.ops.aten.mv.default): 1e-5,
(torch.bfloat16, torch.ops.aten.mv.default): 1e-5,
(torch.float16, torch.ops.aten.log_sigmoid_backward.default): 2e-5,
(torch.float16, torch.ops.aten._softmax_backward_data.default): 3e-7,
}
if ref.is_floating_point():
orig_diff = (orig - ref).abs().max()
decomp_diff = (decomp - ref).abs().max()
atol = tol_table.get((test_dtype, op), 1e-7)
if decomp_diff > orig_diff + atol:
raise RuntimeError(
f"Difference from float64 is larger with decomposition {op.__name__}"
f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
f"atol = {atol}\n"
f"args = {args}\n"
f"kwargs = {kwargs}"
)
else:
test_case.assertEqual(
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
)
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
test_case.assertEqual(
orig.dtype,
decomp.dtype,
f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}",
)
# Before adding an entry to this table, make sure your decomposition is right :)
tol_table = {
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
1e-3,
1e-3,
),
(torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6),
# This exceeds default tolerances only on CPU, on CUDA it's fine
(torch.float32, torch.ops.aten.grid_sampler_2d.default): (7e-6, 3e-5),
# Exceeds tolerances on CUDA, likely due to fma
(torch.float32, torch.ops.aten.mv.default): (1e-5, 3e-5),
(torch.complex64, torch.ops.aten.mv.default): (5e-5, 5e-5),
(torch.float64, torch.ops.aten.upsample_bicubic2d.vec): (1e-5, 5e-4),
(torch.float64, torch.ops.aten.upsample_bicubic2d.default): (1e-5, 5e-4),
# The decomposition is TOO correct. It computes everything in int64, so sometimes
# there's an off-by-one error. See
# https://github.com/pytorch/pytorch/issues/81996
# https://github.com/pytorch/pytorch/issues/82230
(torch.int8, torch.ops.aten.linspace.default): (0, 1),
(torch.uint8, torch.ops.aten.linspace.default): (0, 1),
(torch.int16, torch.ops.aten.linspace.default): (0, 1),
(torch.int32, torch.ops.aten.linspace.default): (0, 1),
(torch.int64, torch.ops.aten.linspace.default): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
}
if (decomp.dtype, op) in tol_table:
rtol, atol = tol_table[(decomp.dtype, op)]
else:
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
test_case.assertEqual(
orig,
decomp,
rtol=rtol,
atol=atol,
msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}",
)
# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
):
flat_args, args_spec = tree_flatten(args)
diff_argnums = tuple(
i
for i, arg in enumerate(flat_args)
if diff_arg(arg, requires_grad=requires_grad)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
# TODO We should check that the integer outputs also agree
result = tuple(
r
for r in result
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
)
assert len(result) > 0
return result
return wrapped, primals
# NB: This also upcasts dtype arguments
# TODO: handle complex correctly
def upcast_tensor(x, dtype=torch.float32):
if isinstance(x, Tensor) and x.dtype.is_floating_point:
return x.to(dtype=dtype)
elif isinstance(x, torch.dtype) and x in [
torch.float16,
torch.bfloat16,
torch.float,
]:
return dtype
else:
return x
def normalize_op_input_output(f, sample, requires_grad=True):
args = tuple([sample.input] + list(sample.args))
return normalize_op_input_output2(
f,
args,
sample.kwargs,
sample.output_process_fn_grad,
requires_grad=requires_grad,
)
CROSS_REF_EXCLUDE_SET = {
# CUBLAS_STATUS_NOT_SUPPORTED when calling
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
("cuda", torch.bfloat16, "nn.functional.bilinear"),
# randomness
(None, None, "special.ndtr"), # aten.special_ndtr was not decomposed
(None, None, "new_empty"),
(None, None, "empty_like"),
(None, None, "empty"),
# AssertionError: False is not true : aten.item was not decomposed, saw calls for: aten._local_scalar_dense.default.
(None, None, "item"),
# It's the only in-place op without an out-of-place equivalent in the Python API
# Its OpInfo wrongly registers it as `torch.zero_(x.clone())`.
(None, None, "zero_"),
# No idea what's going on here
# In the recursive test logsumexp.default fails with args = (torch.tensor(-math.inf), [])
# in the test, but it seems to pass when tested locally and in the logsumexp test
(None, torch.float32, "masked.logsumexp"),
(None, torch.float64, "masked.logsumexp"),
# exp_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.exponential"),
(torch.cpu, torch.float16, "signal.windows.gaussian"),
# sin_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.cosine"),
# CompositeAutogradImplicit
# See https://github.com/pytorch/pytorch/issues/81669
(None, None, "nn.functional.relu6"),
# This decomp runs before autograd.
(None, None, "nn.functional.rrelu"),
(None, None, "meshgrid"),
# Decomposition registered as Autograd
(None, None, "nn.functional.hardshrink"),
(None, None, "nn.functional.softshrink"),
# diag was not decomposed (it just registers a decomp for diag_out, torch.diag is CompImplicit)
(None, None, "diag"),
# _softmax_backward_data's CPU kernel for bfloat16 always return the grad_input as float32
("cpu", torch.bfloat16, "_softmax_backward_data"),
(None, None, "norm"),
# native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise)
(None, None, "native_batch_norm"),
(None, None, "_upsample_bilinear2d_aa"),
(None, None, "empty_strided"), # aten.empty_strided was not decomposed
(
None,
None,
"bernoulli",
), # bernoulli is a function of randomness, so couldn't do cross-reference.
}
CROSS_REF_BACKWARD_EXCLUDE_SET = {
# Decomposed backward formula is not as precise
("cpu", torch.bfloat16, "nn.functional.hardswish"),
("cuda", torch.float16, "nn.functional.cross_entropy"),
(
None,
None,
"bernoulli",
), # bernoulli is a function of randomness, so couldn't do cross-reference.
}
all_decomposed = set()
all_called = defaultdict(int)
# Helpful snippet for testing coverage
"""
import atexit
def check_coverage():
print("missing coverage:")
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
atexit.register(check_coverage)
"""
# Helpful snippet for Horace to create his google sheet :)
"""
import atexit
def dump_ops():
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
f.write(f'{op.__name__}\n')
g.write(f'{count}\n')
with open('run_decompositions.txt', 'w') as f:
for op in sorted([i.__name__ for i in all_decomposed]):
f.write(f'{op}\n')
atexit.register(dump_ops)
"""
def any_unsupported(args, kwargs):
def test_unsupported(t):
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
# These are all things that we haven't coded decompositions
# to handle correctly. Maybe they should.
return any(
[
t.is_sparse_csr,
t.is_sparse,
t.is_mkldnn,
t.is_quantized,
t.is_nested,
torch._is_functional_tensor(t),
]
)
elif torch.overrides.is_tensor_like(t):
# Decompositions will generally change the behavior of Tensor-like
# subclasses, so bypass tests in this case too
return True
else:
return False
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
return any(test_unsupported(x) for x in flat_args)
core_backward_failures = {
skip("_softmax_backward_data"), # slow: fails with --timeout=360 secs
xfail("addcdiv"),
skip("addcmul"), # slow: fails with --timeout=360 secs
skip("deg2rad"), # slow: fails with --timeout=360 secs
skip("diag_embed"), # slow: fails with --timeout=360 secs
skip("frac"), # slow: fails with --timeout=360 secs
skip("grid_sampler_2d"), # slow: fails with --timeout=360 secs
xfail("lerp"),
skip("logaddexp"), # slow: fails with --timeout=360 secs
skip("native_dropout_backward"), # slow: fails with --timeout=360 secs
xfail("nn.functional.binary_cross_entropy_with_logits"),
skip("nn.functional.glu"), # slow: fails with --timeout=360 secs
xfail("nn.functional.hardshrink"),
xfail("nn.functional.softshrink"),
skip("nn.functional.unfold"), # slow: fails with --timeout=360 secs
xfail("norm"),
xfail("norm", "fro"),
xfail("norm", "inf"),
xfail("norm", "nuc"),
skip("rad2deg"), # slow: fails with --timeout=360 secs
skip("renorm"), # slow: fails with --timeout=360 secs
skip("rot90"), # slow: fails with --timeout=360 secs
skip("rsub"), # slow: fails with --timeout=360 secs
skip("sgn"), # slow: fails with --timeout=360 secs
skip("special.xlog1py"), # slow: fails with --timeout=360 secs
xfail("stack"),
skip("tril"), # slow: fails with --timeout=360 secs
skip("triu"), # slow: fails with --timeout=360 secs
skip("unfold_copy"), # slow: fails with --timeout=360 secs
skip("xlogy"), # slow: fails with --timeout=360 secs
xfail("zero_"),
}
if not TEST_WITH_SLOW:
core_backward_failures.update(
{
skip("addr"), # slow: takes 46 sec on A100
skip("baddbmm"), # slow: takes 800+ sec on A100
skip("clamp_min"), # slow: takes 800 sec on A100
skip("clamp_max"), # slow: takes 800 sec on A100
skip("logit"), # slow: takes 44 sec on A100
skip("nn.functional.hardswish"), # slow: takes 60 sec on A100
skip("std_mean"), # slow: takes 170 sec on A100
skip("split", variant_name="list_args"), # slow: takes 118 sec on A100
skip("transpose"), # slow: takes 50 sec on A100
skip("unbind"), # slow: takes 70 sec on A100
skip("unsafe_split"), # slow: takes 49 sec on A100
}
)
comprehensive_failures = {
xfail(
"nn.functional.interpolate", "bilinear", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.interpolate", "bicubic", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.upsample_bilinear", "", dtypes=(torch.uint8,)
), # off by one error
}
@unMarkDynamoStrictTest
class TestDecomp(TestCase):
longMessage = True
# NB: This actually overlaps with test_comprehensive, but it only
# runs on things that are definitely decomposed so it's a lot faster
# to run
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops)
def test_quick(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=False)
@skipOps("TestDecomp", "test_quick_core_backward", core_backward_failures)
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops_core_autograd, allowed_dtypes=(torch.float64,))
def test_quick_core_backward(self, device, dtype, op):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
for sample_input in op.sample_inputs(device, dtype, requires_grad=True):
aten_name = op.decomp_aten_name or op.aten_name
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
func = partial(op.get_op(), **kwargs)
with (
self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=False
) as mode,
enable_python_dispatcher(),
):
torch.autograd.gradcheck(func, args)
self.check_decomposed(aten_name, mode)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@skipOps("TestDecomp", "test_comprehensive", comprehensive_failures)
@suppress_warnings
@ops(op_db)
def test_comprehensive(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=True)
def test_uniform(self, device):
size = (2, 3, 4, 5)
dtype = torch.float32
x = make_tensor(size, dtype=dtype, device=device)
low = 0.3
high = 0.9
torch.manual_seed(123)
ref = torch.ops.aten.uniform(x, low, high)
torch.manual_seed(123)
res = torch._decomp.decompositions.uniform(x, low=low, high=high)
self.assertEqual(ref, res)
def test_bernoulli_default(self, device):
p = 0.3
p_t = p * torch.ones(5, 5)
torch.manual_seed(123)
ref = torch.ops.aten.bernoulli.default(p_t)
torch.manual_seed(123)
res = torch._decomp.decompositions.bernoulli(p_t)
ref_p = ref.sum() / torch.prod(torch.tensor(ref.size()))
res_p = res.sum() / torch.prod(torch.tensor(res.size()))
self.assertEqual(ref_p, res_p, atol=0.06 * p, rtol=0.06)
def test_broadcasting_index_copy(self, device):
x = torch.zeros([1, 10], device=device)
xs = torch.ones([2, 10], device=device)
def index_copy(xs, x):
torch._decomp.decompositions.index_copy_(
xs, 0, torch.tensor(0).to(device), x
)
index_copy(xs, x)
xs_two = torch.ones([2, 10], device=device)
xs_two[0] = x
self.assertEqual(xs, xs_two)
def test_cat_single_input(self, device):
decomp_table = torch._inductor.decomposition.select_decomp_table()
cat_inductor = decomp_table[torch.ops.aten.cat.default]
inp = torch.rand([2048, 2048], device=device)
inps = [inp for _ in range(10)]
for dim in (-1, 0, 1):
self.assertEqual(torch.cat(inps, dim), cat_inductor(inps, dim))
@suppress_warnings
@tf32_off()
# only tests RNNs since we have py dispsatcher decomps for them
@modules(
filter(
lambda m: m.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU),
module_db,
)
)
def test_rnn_decomp_module(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(
module_info,
device=device,
dtype=dtype,
requires_grad=True,
training=training,
)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = (
module_input.constructor_input.args,
module_input.constructor_input.kwargs,
)
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
args, kwargs = (
module_input.forward_input.args,
module_input.forward_input.kwargs,
)
with (
self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=True
),
enable_python_dispatcher(),
):
decomp_out = m(*args, **kwargs)
non_decomp_out = m(*args, **kwargs)
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level
self.assertEqual(decomp_out, non_decomp_out)
def test_batch_norm_unflatten_weight_bias(self, device):
# https://github.com/pytorch/pytorch/issues/100970
shape = (1, 3, 2, 2)
input = torch.randn(shape, device=device)
weight = torch.randn((3, 1, 1, 1), device=device)
bias = torch.randn(3, device=device)
mean = torch.randn(3, device=device)
var = torch.randn(3, device=device)
res = torch._decomp.decompositions.native_batch_norm(
input, weight, bias, mean, var, False, 1, 1e-05
)
self.assertEqual(shape, res[0].shape)
def test_arange_graph(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
def func(x, start):
le = x.shape[-1]
if start is None:
a = torch.arange(le, dtype=torch.float32, device=x.device)
else:
a = torch.arange(start, le, dtype=torch.float32, device=x.device)
return a
pattern = r", device = device\(.+\), requires_grad = False"
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(torch.rand(10, device=device), None)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 0); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
fx_g = cfunc(torch.rand(10, device=device), 1)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(9, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 1); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
def test_masked_fill(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
if torch.device(device).type not in [
"xpu",
"cuda",
torch._C._get_privateuse1_backend_name(),
]:
self.skipTest("only runs on XPU and CUDA and PrivateUse1.")
def func(scores, mask, value):
return scores.masked_fill(mask, value)
scores_t = torch.tensor([1, 2, 3, 4], device=device)
mask_t = torch.tensor([True, True, True, True], device=device)
value_t = torch.tensor(0, dtype=scores_t.dtype)
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(scores_t, mask_t, value_t)
self.assertExpectedInline(
fx_g.code.strip(),
"""\
def forward(self, scores_1, mask_1, value_1):
where = torch.ops.prims.where.default(mask_1, value_1, scores_1); mask_1 = value_1 = scores_1 = None
return where""",
)
class DecompCrossRefMode(TorchDispatchMode):
def __init__(self, test_case, saved_precision, saved_rel_tol, dtype, run_all):
self.test_case = test_case
self.saved_precision = saved_precision
self.saved_rel_tol = saved_rel_tol
self.test_dtype = dtype
self.run_all = run_all
# We check the correctness of each decomposition right after running it.
# So, when we encounter a decomposition, we run the function normally, and
# then run the decomposition, and ensure they're identical.
self.called = set()
self.decomposed = set()
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.test_case.precision = self.saved_precision
self.test_case.rel_tol = self.saved_rel_tol
self.called.add(func)
all_called[func] += 1
# Stuff we shouldn't bother testing
# (TODO: remove detach from the decomp table?)
# N.b. Testing in-place ops would need dedicated logic
in_place = func.name()[-1] == "_"
ignored_ops = [
torch.ops.aten.detach.default,
# non-deterministic ops
torch.ops.aten.empty.memory_format,
torch.ops.aten.empty_like.default,
torch.ops.aten.new_empty.default,
torch.ops.aten.empty_strided.default,
torch.ops.aten.new_empty_strided.default,
torch.ops.aten.randn.default,
torch.ops.aten.native_dropout.default,
]
if (
func not in decomposition_table
or func in ignored_ops
or torch.Tag.nondeterministic_seeded in func.tags
or any_unsupported(args, kwargs)
or in_place
):
return func(*args, **kwargs)
self.decomposed.add(func)
all_decomposed.add(func)
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
# The first one is simply tolerance checking between decomp_out and pytorch_out
# However, for fp16/bf16 and reductions, this becomes very
# finicky, as there are not many guarantees we can make.
# So, for fp16/bf16, we instead compare the difference of
# {decomp_out, pytorch_out_64} and {pytorch_out,
# pytorch_out_64}. In other words, we compare how far the
# decomposition and pytorch are from the "ground truth" (i.e.
# fp64). If the decomposition results in more error, we error
# We also decompose the decomposition recursively for
# further coverage, as some paths not be exercised directly by
# OpInfos (sadly) but just by other ops
decomposition = decomposition_table[func]
do_relative_check = self.test_dtype in [torch.float16, torch.bfloat16]
if self.run_all:
# Execute recursively via DFS, to find the root of a possible error first
with self:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
else:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
# At this stage we should not be decomposing an in-place op
# We'd like to have decompositions that decompose out-of-place ops into out-of-place ops
# because decompositions are run after functionalisation and we would not like them to
# de-functionalise the graph, as that would break AoTAutograd
# We run the real function *after* the decomposition to make sure that the
# decomposition does not modify any of the inputs in-place. If it does
# real_out should be different than decom_out so we should catch this
real_out_unflat = func(*args, **kwargs)
real_out = pytree.tree_leaves(real_out_unflat)
assert len(real_out) == len(decomp_out)
if do_relative_check:
device_arg = kwargs.get("device", None)
def upcast(x):
if (isinstance(x, Tensor) and x.device.type == "mps") or (
device_arg and torch.device(device_arg).type == "mps"
):
return upcast_tensor(x, dtype=torch.float32)
else:
return upcast_tensor(x, dtype=torch.float64)
real_out_double, _ = tree_flatten(
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
)
for i, (orig, decomp, ref) in enumerate(
zip(real_out, decomp_out, real_out_double)
):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_ref(
self.test_case,
func,
self.test_dtype,
i,
orig,
decomp,
ref,
args,
kwargs,
)
else:
for orig, decomp in zip(real_out, decomp_out):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_equal(
self.test_case,
func,
self.test_dtype,
orig,
decomp,
args,
kwargs,
)
return real_out_unflat
def check_decomposed(self, aten_name, mode):
self.assertTrue(
any(overload_to_aten_name(c) == aten_name for c in mode.decomposed),
msg=(
f"aten.{aten_name} was not decomposed, saw calls for: "
f"{', '.join(map(str, list(mode.called)))}. If your op is "
f"CompositeImplicitAutograd you should skip this test "
f"by updating CROSS_REF_EXCLUDE_SET."
),
)
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def do_cross_ref(self, device, dtype, op, *, run_all):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
skip_decomp_vjp = any(
key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys
)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(torch.device(device).type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
aten_name = op.decomp_aten_name or op.aten_name
func = op.get_op()
def run_without_python_dispatcher(mode):
return any(
isinstance(op, torch._ops.OpOverload)
and op.has_kernel_for_dispatch_key(
DispatchKey.CompositeImplicitAutograd
)
for op in mode.decomposed.union([func])
)
for sample_input in samples:
if requires_grad:
fn, primals = normalize_op_input_output(func, sample_input)
primals = tree_map(
lambda x: x if isinstance(x, torch.Tensor) else x, primals
)
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
# store the called list on the mode object instance and no
# explicit clearing is necessary as I will create a fresh mode
# for each region
with (
self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode,
enable_python_dispatcher(),
):
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if aten_name in decomposition_names:
self.check_decomposed(aten_name, mode)
if not skip_decomp_vjp and (
op.aten_backward_name in decomposition_names or run_all
):
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
with (
self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode,
enable_python_dispatcher(),
):
decomp_vjp_fn(cotangents)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_vjp_fn(cotangents)
if not run_all:
self.check_decomposed(op.aten_backward_name, mode)
elif aten_name in decomposition_names or run_all:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# A failure here might be because the decomposition for the op is wrong or because a
# decomposition used by the particular op is wrong.
with (
self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode,
enable_python_dispatcher(),
):
func(*args, **kwargs)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
func(*args, **kwargs)
if not run_all:
self.check_decomposed(aten_name, mode)
else:
assert op.supports_autograd
self.skipTest(
"only backwards is decomposed, but dtype doesn't support AD"
)
instantiate_device_type_tests(TestDecomp, globals())
class DecompOneOffTests(TestCase):
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._softmax(x, -1, False)
res = torch._decomp.decompositions._softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_log_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._log_softmax(x, -1, False)
res = torch._decomp.decompositions._log_softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@onlyCUDA
def test_exponential_non_inf(self, device):
inp = torch.empty((4, 400, 256), device=device)
with torch._dynamo.utils.preserve_rng_state():
exp_ref = inp.exponential_()
exp = torch._refs.exponential(inp)
self.assertEqual(exp, exp_ref)
self.assertFalse(exp.isinf().any())
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@onlyCUDA
def test_amp_batch_norm_backward(self):
device = "cuda"
grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
weight = torch.randn((2,), dtype=torch.float32, device=device)
rmean = torch.randn((2,), dtype=torch.float32, device=device)
rvar = torch.randn((2,), dtype=torch.float32, device=device)
mean = torch.randn((0,), dtype=torch.float32, device=device)
ref = torch.ops.aten.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
res = torch._decomp.decompositions.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
for a, b in zip(ref, res):
self.assertEqual(a.stride(), b.stride())
self.assertEqual(a.dtype, b.dtype)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_elu_backward(self, device):
size = (2, 4, 3, 3)
dtype = torch.float32
grad_out = torch.randn(size, dtype=dtype, device=device)
out = torch.randn(size, dtype=dtype, device=device)
ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out)
res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out)
self.assertEqual(ref, res)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_threshold_backward_dtype(self, device):
grad = torch.randint(10, (4,), device=device)
input_tensor = torch.randint(10, (4,), device=device)
ref = torch.ops.aten.threshold_backward(grad, input_tensor, 1)
res = torch._decomp.decompositions.threshold_backward(grad, input_tensor, 1)
self.assertEqual(ref.dtype, res.dtype)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_weight_norm_interface(self, device):
g = torch.randn((3, 10, 10), device=device)
v = torch.randn((1, 1, 10), device=device)
ref = torch.ops.aten._weight_norm_interface(g, v, 2)
res = torch._decomp.decompositions._weight_norm_interface(g, v, 2)
self.assertTrue(torch.allclose(ref[0], res[0]))
self.assertTrue(torch.allclose(ref[1], res[1]))
inp = torch.rand([30, 10], device=device)
inp2 = torch.rand([30, 1], device=device)
self.assertEqual(
torch.ops.aten._weight_norm_interface(inp, inp2),
torch._decomp.decompositions._weight_norm_interface(inp, inp2),
)
@onlyCPU
@skipIfCrossRef
@skipOps(
"DecompOneOffTests",
"test_sdpa",
[
xfail(
"nn.functional.scaled_dot_product_attention",
dtypes=[torch.half],
),
],
)
@ops(_sdpa_op_info)
def test_sdpa(self, device, dtype, op):
# SDPA doesn't support float16, this is aligned with aten/src/ATen/native/transformers/attention.cpp. If we
# add support for float16 over there we should update this test as well.
query_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
key_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
value_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
masks = [None, torch.ones((1, 1, 100, 100), device=device, dtype=torch.bool)]
atol, rtol = dtype_precisions[dtype]
for mask in masks:
is_causal = mask is None
decomposed_res = (
torch._decomp.decompositions.scaled_dot_product_flash_attention_for_cpu(
query_layer, key_layer, value_layer, 0.0, is_causal, attn_mask=mask
)
)
actual_res = decomposed_res[0]
# Output has form (N, H, L, E), but should be continuous on (L, N, H, E)
# in order for subsequent view(L * N, H * E) to be valid.
# So permute(2, 0, 1, 3) before checking that tensor is contiguous
self.assertTrue(actual_res.permute(2, 0, 1, 3).is_contiguous())
eager_res = op(
query_layer,
key_layer,
value_layer,
attn_mask=mask,
dropout_p=0.0,
is_causal=is_causal,
)
self.assertTrue(torch.allclose(actual_res, eager_res, atol=atol, rtol=rtol))
@onlyCPU
def test_native_layer_norm_cpu_decomp(self, device):
def f(x, w, b):
return torch.ops.aten.native_layer_norm.default(x, [1, 2, 3], w, b, eps=0.5)
x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu")
w = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu")
b = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu")
out_ref = f(x, w, b)
from torch._subclasses.fake_tensor import FakeTensorMode
with enable_python_dispatcher(), FakeTensorMode():
x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu")
w = torch.randn(
1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu"
)
b = torch.randn(
1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu"
)
out = f(x, w, b)
for o_ref, o in zip(out_ref, out):
self.assertEqual(o_ref.dtype, o.dtype)
@onlyCUDA
@unittest.skipIf(not SM70OrLater, "triton")
def test_rms_norm_decomp_cuda(self, device):
@torch.compile
def rms_norm_sinh(a, b, c):
output = torch.nn.functional.rms_norm(a, b, c)
return torch.sinh(output)
normalized_shape_arg = (3, 3, 3)
input_tensor = torch.randn(3, 3, 3, device=device, requires_grad=True)
weight_tensor = torch.randn(3, 3, 3, device=device, requires_grad=True)
def forward_pass_fn():
return rms_norm_sinh(input_tensor, normalized_shape_arg, weight_tensor)
model_output, generated_codes = torch._inductor.utils.run_fw_bw_and_get_code(
forward_pass_fn
)
# check RMSNorm was fused with sinh
self.assertTrue("triton_per_fused__fused_rms_norm_sinh" in generated_codes[0])
self.assertTrue(
"triton_per_fused__fused_rms_norm__fused_rms_norm_backward_cosh_mul"
in generated_codes[1]
)
instantiate_device_type_tests(DecompOneOffTests, globals())
class HasDecompTest(TestCase):
def setUp(self):
super().setUp()
self.maxDiff = None
@staticmethod
def _can_appear_in_trace(op: torch._ops.OpOverload) -> bool:
has_tensor_arg = any(
"Tensor" in str(a.type)
for a in itertools.chain(op._schema.arguments, op._schema.returns)
)
if not has_tensor_arg:
return False
try:
# CompositeImplicitAutograd ops are transparent to the tracer, so don't need decompositions
return not _is_cia_op(op)
except RuntimeError as e:
# has_key fails for some jit-registered ops, which shouldn't be
# relevant here anyway
if "does not exist" in str(e):
return False
raise
def test_has_decomposition(self):
def all_aten_overloads():
for name in torch._C._dispatch_get_all_op_names():
if not name.startswith("aten::"):
continue
name = name[6:]
if "." in name:
packet_name, overload_name = name.split(".")
else:
packet_name, overload_name = name, "default"
packet = getattr(aten, packet_name)
assert isinstance(packet, torch._ops.OpOverloadPacket)
op = getattr(packet, overload_name)
yield op
# This is for operators that are only registered in some CI
# configurations, so would cause the test to fail
allow_list = {aten.get_gradients.default}
overloads_wanting_decomp = {
op for op in all_aten_overloads() if self._can_appear_in_trace(op)
}
ops_missing_decomp = overloads_wanting_decomp - decomposition_table.keys()
ops_missing_decomp -= allow_list
self.assertExpected(
"".join(sorted(op.name() + "\n" for op in ops_missing_decomp))
)
def test_aten_core_operators(self):
# If a decomposition isn't included in the core decompositions,
# then it must decompose a core ATen operator.
#
# See NOTE [Core ATen Ops]
#
# If this test fails then either:
# - Add the decomposition to torch._decomp.core_aten_decompositions,
# if decomposition should be used by inductor (not a core operator).
# - Run this test again with EXPECTTEST_ACCEPT=1 to update the list of
# core ATen operators (and inductor will not use the decomposition).
# Some decompositions are registered for CompositeImplicitAutograd
# operators, which never appear in AOTAutograd's graph so are never used.
useful_decomps = {
op
for op in decomposition_table.keys()
if isinstance(op, torch._ops.OpOverload) and self._can_appear_in_trace(op)
}
core_decomps = torch._decomp.core_aten_decompositions().keys()
core_aten_ops = useful_decomps - core_decomps
self.assertExpected("".join(sorted(op.name() + "\n" for op in core_aten_ops)))
def test_conv1d_decomposition(self):
from torch._inductor.decomposition import conv1d_to_conv2d
def check_case(
N=2,
C_in=3,
C_out=5,
L=37,
K=5,
stride=2,
padding=3,
dilation=1,
groups=1,
dtype=torch.float32,
device="cpu",
):
torch.manual_seed(0)
x = torch.randn(N, C_in, L, dtype=dtype, device=device)
w = torch.randn(C_out, C_in // groups, K, dtype=dtype, device=device)
b = torch.randn(C_out, dtype=dtype, device=device)
ref = torch.ops.aten.conv1d.default(
x,
w,
b,
stride=[stride],
padding=[padding],
dilation=[dilation],
groups=groups,
)
got = conv1d_to_conv2d(
x,
w,
b,
stride=[stride],
padding=[padding],
dilation=[dilation],
groups=groups,
)
self.assertTrue(torch.allclose(ref, got, atol=1e-5, rtol=1e-5))
# A few cases
check_case() # default
check_case(stride=1, padding=0, K=3)
check_case(stride=3, padding=4, K=7)
check_case(dilation=2, padding=6, K=5) # dilation
check_case(groups=1, C_in=8, C_out=12) # groups=1 bigger
check_case(groups=2, C_in=8, C_out=12) # grouped conv
if __name__ == "__main__":
run_tests()