mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: ======= This PR addresses the following: * Adds JIT support for CUDA Streams * Adds JIT support for CUDA Events * Adds JIT support for CUDA Stream context manager Testing: ====== python test/test_jit.py -v TestCUDA Pull Request resolved: https://github.com/pytorch/pytorch/pull/48020 Reviewed By: navahgar Differential Revision: D25725749 Pulled By: nikithamalgifb fbshipit-source-id: b0addeb49630f8f0c430ed7badeca43bb9d2535c
153 lines
4.9 KiB
C++
153 lines
4.9 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <test/cpp/jit/test_utils.h>
|
|
#include <sstream>
|
|
|
|
#include <torch/csrc/jit/serialization/export.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/csrc/jit/serialization/import_source.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include "caffe2/serialize/istream_adapter.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
TEST(SerializationTest, ExtraFilesHookPreference) {
|
|
// Tests that an extra file written explicitly has precedence over
|
|
// extra files written by a hook
|
|
// TODO: test for the warning, too
|
|
const auto script = R"JIT(
|
|
def forward(self):
|
|
x = torch.rand(5, 5)
|
|
x = x.mm(x)
|
|
return x
|
|
)JIT";
|
|
|
|
auto module =
|
|
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
|
|
module->define(script);
|
|
std::ostringstream oss;
|
|
std::unordered_map<std::string, std::string> extra_files;
|
|
extra_files["metadata.json"] = "abc";
|
|
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
|
|
return {{"metadata.json", "def"}};
|
|
});
|
|
module->save(oss, extra_files);
|
|
SetExportModuleExtraFilesHook(nullptr);
|
|
|
|
std::istringstream iss(oss.str());
|
|
caffe2::serialize::IStreamAdapter adapter{&iss};
|
|
std::unordered_map<std::string, std::string> loaded_extra_files;
|
|
loaded_extra_files["metadata.json"] = "";
|
|
auto loaded_module = torch::jit::load(iss, torch::kCPU, loaded_extra_files);
|
|
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
|
|
}
|
|
|
|
TEST(SerializationTest, ExtraFileHooksNoSecret) {
|
|
// no secrets
|
|
std::stringstream ss;
|
|
{
|
|
Module m("__torch__.m");
|
|
ExtraFilesMap extra;
|
|
extra["metadata.json"] = "abc";
|
|
m.save(ss, extra);
|
|
}
|
|
ss.seekg(0);
|
|
{
|
|
ExtraFilesMap extra;
|
|
extra["metadata.json"] = "";
|
|
extra["secret.json"] = "";
|
|
jit::load(ss, c10::nullopt, extra);
|
|
ASSERT_EQ(extra["metadata.json"], "abc");
|
|
ASSERT_EQ(extra["secret.json"], "");
|
|
}
|
|
}
|
|
|
|
TEST(SerializationTest, ExtraFileHooksWithSecret) {
|
|
std::stringstream ss;
|
|
{
|
|
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
|
|
return {{"secret.json", "topsecret"}};
|
|
});
|
|
Module m("__torch__.m");
|
|
ExtraFilesMap extra;
|
|
extra["metadata.json"] = "abc";
|
|
m.save(ss, extra);
|
|
SetExportModuleExtraFilesHook(nullptr);
|
|
}
|
|
ss.seekg(0);
|
|
{
|
|
ExtraFilesMap extra;
|
|
extra["metadata.json"] = "";
|
|
extra["secret.json"] = "";
|
|
jit::load(ss, c10::nullopt, extra);
|
|
ASSERT_EQ(extra["metadata.json"], "abc");
|
|
ASSERT_EQ(extra["secret.json"], "topsecret");
|
|
}
|
|
}
|
|
|
|
TEST(SerializationTest, TypeTags) {
|
|
auto list = c10::List<c10::List<int64_t>>();
|
|
list.push_back(c10::List<int64_t>({1, 2, 3}));
|
|
list.push_back(c10::List<int64_t>({4, 5, 6}));
|
|
auto dict = c10::Dict<std::string, at::Tensor>();
|
|
dict.insert("Hello", torch::ones({2, 2}));
|
|
auto dict_list = c10::List<c10::Dict<std::string, at::Tensor>>();
|
|
for (size_t i = 0; i < 5; i++) {
|
|
auto another_dict = c10::Dict<std::string, at::Tensor>();
|
|
another_dict.insert("Hello" + std::to_string(i), torch::ones({2, 2}));
|
|
dict_list.push_back(another_dict);
|
|
}
|
|
auto tuple = std::tuple<int, std::string>(2, "hi");
|
|
struct TestItem {
|
|
IValue value;
|
|
TypePtr expected_type;
|
|
};
|
|
std::vector<TestItem> items = {
|
|
{list, ListType::create(ListType::create(IntType::get()))},
|
|
{2, IntType::get()},
|
|
{dict, DictType::create(StringType::get(), TensorType::get())},
|
|
{dict_list,
|
|
ListType::create(
|
|
DictType::create(StringType::get(), TensorType::get()))},
|
|
{tuple, TupleType::create({IntType::get(), StringType::get()})}};
|
|
for (auto item : items) {
|
|
auto bytes = torch::pickle_save(item.value);
|
|
auto loaded = torch::pickle_load(bytes);
|
|
ASSERT_TRUE(loaded.type()->isSubtypeOf(item.expected_type));
|
|
ASSERT_TRUE(item.expected_type->isSubtypeOf(loaded.type()));
|
|
}
|
|
}
|
|
|
|
TEST(SerializationTest, TestJitStream_CUDA) {
|
|
torch::jit::Module model;
|
|
std::vector<torch::jit::IValue> inputs;
|
|
// Deserialize the ScriptModule from a file using torch::jit::load().
|
|
// Load the scripted model. This should have been generated by tests_setup.py
|
|
// Refer: TorchSaveJitStream_CUDA in test/cpp/jit/tests_setup.py
|
|
model = torch::jit::load("saved_stream_model.pt");
|
|
|
|
auto output = model.forward(inputs);
|
|
auto list_of_elements = output.toTuple()->elements();
|
|
auto is_stream_s = list_of_elements[0].toBool();
|
|
|
|
// a,b: These are the two input tensors
|
|
// c: This is output tensor generated by the operation torch.cat(a,b)
|
|
auto a = list_of_elements[1].toTensor();
|
|
auto b = list_of_elements[2].toTensor();
|
|
auto c = list_of_elements[3].toTensor();
|
|
// op: this is used to verify if the cat operation produced the same results
|
|
// as that on the GPU with torch.cat
|
|
auto op = at::cat({a, b}, 0);
|
|
|
|
// Check if the stream is set
|
|
ASSERT_TRUE(is_stream_s);
|
|
// Check if the sizes of the outputs (op and c) is same on the GPU and CPU
|
|
ASSERT_EQ(op.sizes(), c.sizes());
|
|
// Check if both the output tensors are equal
|
|
ASSERT_TRUE(op.equal(c));
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|