Files
pytorch/test/cpp/tensorexpr/test_expr.cpp
PyTorch MergeBot e288c258f7 Revert "Remove tensorexpr tests (#158928)"
This reverts commit d742a2896c571a535003d5928fe80397325575a5.

Reverted https://github.com/pytorch/pytorch/pull/158928 on behalf of https://github.com/yangw-dev due to this breaks bunch of internal dependency since some tests are still using the deleted test files from this pr, the internal reviewer please help fix this using codev ([comment](https://github.com/pytorch/pytorch/pull/158928#issuecomment-3134378616))
2025-07-29 23:32:07 +00:00

837 lines
26 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <test/cpp/tensorexpr/test_utils.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_verifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using SimpleIRExprEval = ExprEval<SimpleIREvaluator>;
TEST(Expr, BasicValueTest) {
ExprHandle a = IntImm::make(2), b = IntImm::make(3);
ExprHandle c = Add::make(a, b);
SimpleIRExprEval eval(c);
ASSERT_EQ(eval.value<int>(), 5);
}
TEST(Expr, BasicValueTest02) {
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle f = (a + b) - (c + d);
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<float>(), -4.0f);
}
TEST(Expr, IsChannelsLastContiguous) {
std::vector<VarHandle> vars = {
VarHandle("var1", kLong),
VarHandle("var2", kLong),
VarHandle("var3", kLong),
VarHandle("var4", kLong),
VarHandle("var5", kLong)};
// {
// key: ndims,
// value: [
// ...
// [dim_2, dim_1, ..., dim_n]
// ]
// }
using shapGenInfo = std::unordered_map<int, std::vector<std::vector<int>>>;
// {
// size: [ExprHandle_1, ExprHandle_2, ..., ExprHandle_n],
// strides: [
// ...
// [ExprHandle_x, ExprHandle_y, ..., ExprHandle_z]
// ]
// }
using shapeInfo =
std::pair<std::vector<ExprHandle>, std::vector<std::vector<ExprHandle>>>;
std::vector<int> dims = {3, 4, 5};
std::unordered_map<int, std::vector<ExprHandle>> dims_expr_vec_conf = {
{3, std::vector<ExprHandle>(vars.begin(), vars.begin() + 2)},
{4, std::vector<ExprHandle>(vars.begin(), vars.begin() + 3)},
{5, std::vector<ExprHandle>(vars.begin(), vars.begin() + 4)},
};
shapGenInfo channels_last_cont_shape_conf = {
{3, {{1, 2, 0}}}, {4, {{1, 3, 2, 0}}}, {5, {{1, 4, 3, 2, 0}}}};
shapGenInfo channels_last_non_cont_shape_conf = {
{3, {{2, 1, 0}, {1, 0, 2}}},
{4, {{3, 1, 2, 0}, {1, 2, 3, 0}, {1, 0, 2, 3}}},
{5, {{4, 3, 2, 1, 0}, {1, 3, 2, 4, 0}, {1, 4, 3, 2, 0}}}};
shapGenInfo cont_shape_conf = {
{3, {{0, 1, 2}}}, {4, {{0, 1, 2, 3}}}, {5, {{0, 1, 2, 3, 4}}}};
auto shape_gen_fn = [dims_expr_vec_conf](
int ndims, shapGenInfo shape_gen_info) -> shapeInfo {
auto dims_expr_vec = dims_expr_vec_conf.at(ndims);
std::vector<std::vector<ExprHandle>> strides_expr_vec;
for (size_t i = 0; i < strides_expr_vec.size(); i++) {
strides_expr_vec[i].resize(ndims);
}
auto stride_gen_fn = [](int indicator, ExprHandle a, ExprHandle b) {
if (indicator % 2 == 0) {
return a * b;
} else {
return b * a;
}
};
auto stride_order_vec = shape_gen_info.at(ndims);
for (size_t i = 0; i < strides_expr_vec.size(); i++) {
auto stride_order = stride_order_vec[i];
strides_expr_vec[i][stride_order[0]] = 1;
for (size_t j = 1; j < stride_order.size(); j++) {
auto cur_dim_idx = stride_order[j];
auto adjacent_dim_idx = stride_order[j - 1];
strides_expr_vec[i][cur_dim_idx] = stride_gen_fn(
i,
dims_expr_vec[adjacent_dim_idx],
strides_expr_vec[i][adjacent_dim_idx]);
}
}
return {dims_expr_vec, strides_expr_vec};
};
auto check_channels_last_fn = [](int ndims, BufHandle buf_handle) -> bool {
if (ndims == 3) {
return buf_handle.is_channels_last_1d_contiguous();
} else if (ndims == 4) {
return buf_handle.is_contiguous(at::MemoryFormat::ChannelsLast);
} else {
return buf_handle.is_contiguous(at::MemoryFormat::ChannelsLast3d);
}
};
// channels-last contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(check_channels_last_fn(dims[i], buf_handle), true);
}
}
// channels-last non-contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_non_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(check_channels_last_fn(dims[i], buf_handle), false);
}
}
// contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(buf_handle.is_contiguous(), true);
}
}
// non-contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(buf_handle.is_contiguous(), false);
}
}
}
TEST(Expr, LetTest01) {
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
TEST(Expr, LetTest02) {
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body =
ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f) * y);
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
eval.bindVar(y, ExprHandle(6.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4 * 6));
}
TEST(Expr, LetStmtTest01) {
BufHandle a_buf("a", {1}, kFloat);
BufHandle b_buf("b", {1}, kFloat);
ExprHandle load_a = a_buf.load(0);
VarHandle var = VarHandle("v", kFloat);
StmtPtr let_store = Let::make(var, load_a);
StmtPtr store_b = b_buf.store({0}, var);
BlockPtr block = Block::make({let_store, store_b});
SimpleIREvaluator eval(block, {a_buf, b_buf});
PaddedBuffer<float> a_v(1);
PaddedBuffer<float> b_v(1);
PaddedBuffer<float> b_ref(1);
a_v(0) = 23;
b_ref(0) = a_v(0);
eval(a_v, b_v);
ExpectAllNear(b_v, b_ref, 1e-5);
}
TEST(Expr, IntTest) {
VarHandle x("x", kInt);
ExprHandle body = ExprHandle(2) + (x * ExprHandle(3) + ExprHandle(4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3));
ASSERT_EQ(eval.value<int>(), 2 + (3 * 3 + 4));
}
TEST(Expr, FloatTest) {
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
TEST(Expr, ByteTest) {
VarHandle x("x", kByte);
ExprHandle body = ExprHandle((uint8_t)2) +
(x * ExprHandle((uint8_t)3) + ExprHandle((uint8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((uint8_t)3));
ASSERT_EQ(eval.value<uint8_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, CharTest) {
VarHandle x("x", kChar);
ExprHandle body = ExprHandle((int8_t)2) +
(x * ExprHandle((int8_t)3) + ExprHandle((int8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int8_t)3));
ASSERT_EQ(eval.value<int8_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, ShortTest) {
VarHandle x("x", kShort);
ExprHandle body = ExprHandle((int16_t)2) +
(x * ExprHandle((int16_t)3) + ExprHandle((int16_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int16_t)3));
ASSERT_EQ(eval.value<int16_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, LongTest) {
VarHandle x("x", kLong);
ExprHandle body = ExprHandle((int64_t)2) +
(x * ExprHandle((int64_t)3) + ExprHandle((int64_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int64_t)3));
ASSERT_EQ(eval.value<int64_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, HalfTest) {
VarHandle x("x", kHalf);
ExprHandle body = ExprHandle((at::Half)2) +
(x * ExprHandle((at::Half)3) + ExprHandle((at::Half)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((at::Half)3));
ASSERT_EQ(eval.value<at::Half>(), 2 + (3 * 3 + 4));
}
TEST(Expr, DoubleTest) {
VarHandle x("x", kDouble);
ExprHandle body = ExprHandle((double)2) +
(x * ExprHandle((double)3) + ExprHandle((double)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((double)3));
ASSERT_EQ(eval.value<double>(), 2 + (3 * 3 + 4));
}
TEST(Expr, VectorAdd01) {
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
BufHandle a_buf("A", {kTotalSize}, kFloat);
BufHandle b_buf("B", {kTotalSize}, kFloat);
BufHandle c_buf("C", {kTotalSize}, kFloat);
/*
Build the following:
for (const auto index : c10::irange(kVectorCount)) {
store(c_buf, ramp(index * 8, 1, 8),
load(a_buf, ramp(index * 8, 1, 8) +
load(b_buf, ramp(index * 8, 1, 8))))
}
*/
VarHandle index = VarHandle("index", kInt);
ExprHandle load_a =
a_buf.load({Ramp::make(index * kVectorSize, 1, kVectorSize)});
ExprHandle load_b =
b_buf.load({Ramp::make(index * kVectorSize, 1, kVectorSize)});
ExprHandle value = load_a + load_b;
StmtPtr store_c =
c_buf.store({Ramp::make(index * kVectorSize, 1, kVectorSize)}, value);
StmtPtr stmt = For::make(index, 0, kVectorCount, store_c);
ASSERT_EQ(load_a.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(load_b.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(value.dtype(), Dtype(kFloat, kVectorSize));
PaddedBuffer<float> a_v(kTotalSize);
PaddedBuffer<float> b_v(kTotalSize);
PaddedBuffer<float> c_v(kTotalSize);
PaddedBuffer<float> c_ref(kTotalSize);
for (const auto i : c10::irange(kTotalSize)) {
a_v(i) = i * i;
b_v(i) = i * i * 4;
c_ref(i) = a_v(i) + b_v(i);
}
SimpleIREvaluator ir_eval(stmt, {a_buf, b_buf, c_buf});
ir_eval(a_v, b_v, c_v);
ExpectAllNear(c_v, c_ref, 1e-5);
}
TEST(Expr, CompareSelectEQ) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 0);
VarHandle i("i", kInt);
auto memcpy_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(memcpy_expr, {a, b, c});
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 1);
}
TEST(Expr, CompareSelectDtypes) {
// LHS and RHS expressions should have the same dtype, but this dtype could
// differ from the dtype of the return values (but dtypes of true and false
// return values should be the same).
// This test constructs a CompareSelect expression where the input dtype is
// different from the output dtype and verifies that it works correctly:
// result = ((int)lhs == (int)rhs) ? (float)retval1 : (float)retval2
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kFloat);
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<float> c_buffer(N, 0.0f);
std::vector<float> c_ref(N, 3.14f);
VarHandle i("i", kInt);
// C[i] = (A[i] == B[i]) ? 3.14f : 2.78f
// A and B are int, C is float.
auto select_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i),
b.load(i),
FloatImm::make(3.14f),
FloatImm::make(2.78f),
CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(select_expr, {a, b, c});
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
ExpectAllNear(c_buffer, c_ref, 1e-7);
}
TEST(Expr, IntrinsicsDtypes) {
constexpr int N = 256;
BufHandle a("A", {N}, kDouble);
BufHandle b("B", {N}, kDouble);
std::vector<double> a_buffer(N, -10.0);
std::vector<double> b_buffer(N, 0.0);
std::vector<double> b_ref(N, 10.0);
VarHandle i("i", kInt);
auto abs_expr = For::make(i, 0, N, b.store({i}, tensorexpr::abs(a.load(i))));
SimpleIREvaluator ir_eval(abs_expr, {a, b});
ir_eval(a_buffer, b_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, -10.0);
ExpectAllNear(b_buffer, b_ref, 1e-7);
}
TEST(Expr, Substitute01) {
VarPtr x = alloc<Var>("x", kFloat);
VarPtr y = alloc<Var>("y", kFloat);
ExprPtr e =
alloc<Mul>(alloc<Sub>(x, alloc<FloatImm>(1.0f)), alloc<Add>(x, y));
VarPtr z = alloc<Var>("z", kFloat);
ExprPtr e2 = Substitute(e, {{x, alloc<Add>(z, alloc<FloatImm>(5.0f))}});
ExprPtr e2_ref = alloc<Mul>(
alloc<Sub>(alloc<Add>(z, alloc<FloatImm>(5.0f)), alloc<FloatImm>(1.0f)),
alloc<Add>(alloc<Add>(z, alloc<FloatImm>(5.0f)), y));
std::ostringstream oss;
oss << *e2;
std::string e2_str = oss.str();
oss.str("");
oss << *e2_ref;
std::string e2_ref_str = oss.str();
ASSERT_EQ(e2_str, e2_ref_str);
}
TEST(Expr, Math01) {
ExprHandle v = sin(ExprHandle(1.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "sin(1.f)");
SimpleIRExprEval eval(v);
float v_ref = std::sin(1.0f);
float res = eval.value<float>();
ASSERT_NEAR(res, v_ref, 1e-6);
}
TEST(Expr, UnaryMath01) {
struct TestConfig {
std::function<ExprHandle(const ExprHandle&)> func;
std::function<float(float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return tan(v); },
[](float v) { return std::tan(v); }},
{[](const ExprHandle& v) { return asin(v); },
[](float v) { return std::asin(v); }},
{[](const ExprHandle& v) { return acos(v); },
[](float v) { return std::acos(v); }},
{[](const ExprHandle& v) { return atan(v); },
[](float v) { return std::atan(v); }},
{[](const ExprHandle& v) { return sinh(v); },
[](float v) { return std::sinh(v); }},
{[](const ExprHandle& v) { return cosh(v); },
[](float v) { return std::cosh(v); }},
{[](const ExprHandle& v) { return tanh(v); },
[](float v) { return std::tanh(v); }},
{[](const ExprHandle& v) { return exp(v); },
[](float v) { return std::exp(v); }},
{[](const ExprHandle& v) { return tensorexpr::abs(v); },
[](float v) { return std::fabs(v); }},
{[](const ExprHandle& v) { return log(v); },
[](float v) { return std::log(v); }},
{[](const ExprHandle& v) { return log2(v); },
[](float v) { return std::log2(v); }},
{[](const ExprHandle& v) { return log10(v); },
[](float v) { return std::log10(v); }},
{[](const ExprHandle& v) { return erf(v); },
[](float v) { return std::erf(v); }},
{[](const ExprHandle& v) { return sqrt(v); },
[](float v) { return std::sqrt(v); }},
{[](const ExprHandle& v) { return rsqrt(v); },
[](float v) { return 1.0f / std::sqrt(v); }},
{[](const ExprHandle& v) { return ceil(v); },
[](float v) { return std::ceil(v); }},
{[](const ExprHandle& v) { return floor(v); },
[](float v) { return std::floor(v); }},
{[](const ExprHandle& v) { return round(v); },
[](float v) { return std::round(v); }},
{[](const ExprHandle& v) { return trunc(v); },
[](float v) { return std::trunc(v); }},
};
for (const TestConfig& test_config : test_configs) {
const float input_v = 0.8765f;
ExprHandle v = test_config.func(ExprHandle(input_v));
float v_ref = test_config.ref_func(input_v);
SimpleIRExprEval eval(v);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (float input_v : {std::nan("1"), 0., .5}) {
ExprHandle v = FloatImm::make(input_v);
SimpleIRExprEval eval(Intrinsics::make(kIsNan, v));
ASSERT_NEAR(eval.value<int>(), std::isnan(input_v), 0);
}
}
TEST(Expr, BinaryMath01) {
struct TestConfig {
std::function<ExprHandle(const ExprHandle&, const ExprHandle&)> func;
std::function<float(float, float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v1, const ExprHandle& v2) { return pow(v1, v2); },
[](float v1, float v2) { return std::pow(v1, v2); }},
{[](const ExprHandle& v1, const ExprHandle& v2) { return fmod(v1, v2); },
[](float v1, float v2) { return std::fmod(v1, v2); }},
};
for (const TestConfig& test_config : test_configs) {
const float v1 = 0.8765f;
float v2 = 1.2345f;
ExprHandle v_expr = test_config.func(ExprHandle(v1), ExprHandle(v2));
float v_ref = test_config.ref_func(v1, v2);
SimpleIRExprEval eval(v_expr);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
}
TEST(Expr, LogicalOps01) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.69f);
ExprHandle f1 = (a > b) && (c > d);
ExprHandle f2 = (a > b) && (c < d);
ExprHandle f3 = (a < b) && (c > d);
ExprHandle f4 = (a < b) && (c < d);
ExprHandle f5 = (a < b) || (c > d);
ExprHandle f6 = (a < b) || (c < d);
ExprHandle f7 = (a > b) || (c < d);
ExprHandle f8 = (a > b) || (c > d);
SimpleIRExprEval eval1(f1);
SimpleIRExprEval eval2(f2);
SimpleIRExprEval eval3(f3);
SimpleIRExprEval eval4(f4);
SimpleIRExprEval eval5(f5);
SimpleIRExprEval eval6(f6);
SimpleIRExprEval eval7(f7);
SimpleIRExprEval eval8(f8);
ASSERT_EQ(eval1.value<int>(), 1);
ASSERT_EQ(eval2.value<int>(), 0);
ASSERT_EQ(eval3.value<int>(), 0);
ASSERT_EQ(eval4.value<int>(), 0);
ASSERT_EQ(eval5.value<int>(), 1);
ASSERT_EQ(eval6.value<int>(), 0);
ASSERT_EQ(eval7.value<int>(), 1);
ASSERT_EQ(eval8.value<int>(), 1);
}
TEST(Expr, LogicalOps02) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.72f);
ExprHandle f1 = (a > b) || (c > d);
ExprHandle f2 = (a > b) && (c <= d);
ExprHandle f3 = (a > b) && (c > d);
ExprHandle ff1 = f1 && f2;
ExprHandle ff2 = f2 || f3;
SimpleIRExprEval eval1(ff1);
SimpleIRExprEval eval2(ff2);
ASSERT_EQ(eval1.value<int>(), 1);
ASSERT_EQ(eval2.value<int>(), 1);
}
TEST(Expr, LogicalOps03) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.69f);
// Bool types
ExprHandle bool_f1 = (a > b) && BoolImm::make(true);
ExprHandle bool_f2 = (c <= d) || BoolImm::make(true);
// Int types
ExprHandle int_f1 = (a > b) && IntImm::make(1);
ExprHandle int_f2 = (c <= d) || IntImm::make(1);
// Short types
ExprHandle short_f1 = (a > b) && ShortImm::make(1);
ExprHandle short_f2 = (c <= d) || ShortImm::make(1);
// Long types
ExprHandle long_f1 = (a > b) && LongImm::make(1);
ExprHandle long_f2 = (c <= d) || LongImm::make(1);
// Char types
ExprHandle char_f1 = (a > b) && CharImm::make(1);
ExprHandle char_f2 = (c <= d) || CharImm::make(1);
// Byte types
ExprHandle byte_f1 = (a > b) && ByteImm::make(1);
ExprHandle byte_f2 = (c <= d) || ByteImm::make(1);
SimpleIRExprEval eval1(bool_f1);
SimpleIRExprEval eval2(bool_f2);
SimpleIRExprEval eval3(int_f1);
SimpleIRExprEval eval4(int_f2);
SimpleIRExprEval eval5(short_f1);
SimpleIRExprEval eval6(short_f2);
SimpleIRExprEval eval7(long_f1);
SimpleIRExprEval eval8(long_f2);
SimpleIRExprEval eval9(char_f1);
SimpleIRExprEval eval10(char_f2);
SimpleIRExprEval eval11(byte_f1);
SimpleIRExprEval eval12(byte_f2);
ASSERT_EQ(eval1.value<bool>(), true);
ASSERT_EQ(eval2.value<bool>(), true);
ASSERT_EQ(eval3.value<int>(), 1);
ASSERT_EQ(eval4.value<int>(), 1);
ASSERT_EQ(eval5.value<int16_t>(), 1);
ASSERT_EQ(eval6.value<int16_t>(), 1);
ASSERT_EQ(eval7.value<int64_t>(), 1);
ASSERT_EQ(eval8.value<int64_t>(), 1);
ASSERT_EQ(eval9.value<int8_t>(), 1);
ASSERT_EQ(eval10.value<int8_t>(), 1);
ASSERT_EQ(eval11.value<uint8_t>(), 1);
ASSERT_EQ(eval12.value<uint8_t>(), 1);
}
TEST(Expr, BitwiseOps) {
ExprHandle a(59);
ExprHandle b(11);
ExprHandle c(101);
ExprHandle d(2);
ExprHandle f = (((a ^ (b << 1)) & c) >> 2) | d;
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<int>(), 11);
}
TEST(Expr, DynamicShapeAdd) {
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
BufHandle a("a", {n}, kFloat);
BufHandle b("b", {n}, kFloat);
BufHandle c("c", {n}, kFloat);
VarHandle i("i", kInt);
StmtPtr s = For::make(i, 0, n, c.store({i}, a.load(i) + b.load(i)));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
SimpleIREvaluator(s, {a, b, c, n})(aData, bData, cData, size);
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
TEST(Expr, OutOfBounds) {
ExprHandle N(10);
ExprHandle start(0);
ExprHandle stop(15);
VarHandle i("i", kInt);
BufHandle X("X", {N}, kInt);
auto body = Store::make(X, {i}, i);
auto stmt = For::make(i, start, stop, body);
PaddedBuffer<int> data(20);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
TEST(Expr, OutOfBounds2d) {
std::vector<std::pair<int, int>> size_options = {{10, 15}, {15, 10}};
for (auto sizes : size_options) {
ExprHandle N(sizes.first);
ExprHandle M(sizes.second);
ExprHandle start(0);
ExprHandle stopInner(15);
ExprHandle stopOuter(15);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
BufHandle X("X", {N, M}, kInt);
auto body = Store::make(X, {i, j}, i);
auto inner = For::make(j, start, stopInner, body);
auto stmt = For::make(i, start, stopOuter, inner);
PaddedBuffer<int> data(400);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
}
TEST(Expr, OutOfBounds2dFlattenedIndex) {
ExprHandle buf_size(149);
ExprHandle start(0);
ExprHandle stopInner(15);
ExprHandle stopOuter(10);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
BufHandle X("X", {buf_size}, kInt);
auto idx = Add::make(Mul::make(i, stopInner), j);
auto body = Store::make(X, {idx}, i);
auto inner = For::make(j, start, stopInner, body);
auto stmt = For::make(i, start, stopOuter, inner);
PaddedBuffer<int> data(400);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
void testCond01() {
const int N = 16;
PaddedBuffer<float> a_v(N);
BufHandle a_buf("a", {N}, kFloat);
VarHandle index = VarHandle("index", kInt);
StmtPtr assign_x2 = a_buf.store({index}, cast<float>(index) * 2);
StmtPtr assign_x3 = a_buf.store({index}, cast<float>(index) * 3);
ExprHandle even_cond = CompareSelect::make(Mod::make(index, 2), 0, kEQ);
StmtPtr assign = Cond::make(even_cond, assign_x2, assign_x3);
StmtPtr for_stmt = For::make(index, 0, N, assign);
SimpleIREvaluator(for_stmt, {a_buf})(a_v);
PaddedBuffer<float> a_ref(N);
for (const auto i : c10::irange(N)) {
if (i % 2 == 0) {
a_ref(i) = i * 2;
} else {
a_ref(i) = i * 3;
}
}
ExpectAllNear(a_v, a_ref, 1e-5);
}
void testIfThenElse01() {
ExprHandle v = ifThenElse(ExprHandle(1), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(1, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 1.0f);
}
void testIfThenElse02() {
ExprHandle v = ifThenElse(ExprHandle(0), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testIfThenElse03() {
ExprHandle v =
ifThenElse(BoolImm::make(false), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testStmtClone() {
const int N = 16;
BufHandle a_buf("a", {N}, kInt);
VarHandle index = VarHandle("index", kInt);
StmtPtr body = a_buf.store({index}, 5);
StmtPtr loop = For::make(index, 0, N, body);
StmtPtr cloned_loop = Stmt::clone(loop);
std::vector<int> orig_loop_results(N);
std::vector<int> cloned_loop_results(N);
SimpleIREvaluator(loop, {a_buf})(orig_loop_results);
SimpleIREvaluator(cloned_loop, {a_buf})(cloned_loop_results);
assertAllEqual(orig_loop_results, 5);
assertAllEqual(cloned_loop_results, 5);
// Let's add another assign to the body in the cloned loop and verify that the
// original statement hasn't changed while the cloned one has.
StmtPtr body_addition = a_buf.store({index}, 33);
BlockPtr cloned_body = static_to<Block>(static_to<For>(cloned_loop)->body());
cloned_body->append_stmt(body_addition);
std::vector<int> orig_loop_results_after_mutation(N);
std::vector<int> cloned_loop_results_after_mutation(N);
SimpleIREvaluator(loop, {a_buf})(orig_loop_results_after_mutation);
SimpleIREvaluator(cloned_loop, {a_buf})(cloned_loop_results_after_mutation);
assertAllEqual(orig_loop_results_after_mutation, 5);
assertAllEqual(cloned_loop_results_after_mutation, 33);
}
} // namespace jit
} // namespace torch