Files
pytorch/torch/_dynamo/variables/builtin.py
PyTorch MergeBot 1185b81c51 Revert "[dynamo] Use polyfill to implement comparison operators (#144485)"
This reverts commit d1f82de2bf4ce4d4461791a9c9b2e759202db0bb.

Reverted https://github.com/pytorch/pytorch/pull/144485 on behalf of https://github.com/huydhn due to This seems to break dynamo tests in trunk after landing ([comment](https://github.com/pytorch/pytorch/pull/144485#issuecomment-2622893294))
2025-01-29 21:30:42 +00:00

2061 lines
78 KiB
Python

# mypy: ignore-errors
import contextlib
import functools
import inspect
import itertools
import logging
import math
import operator
import types
from collections import defaultdict, OrderedDict
from collections.abc import KeysView
from typing import TYPE_CHECKING
import torch
from torch import sym_float, sym_int
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from .. import config, polyfills, variables
from ..exc import (
AttributeMutationError,
unimplemented,
Unsupported,
UserError,
UserErrorType,
)
from ..guards import GuardBuilder, install_guard
from ..replay_record import DummyModule
from ..source import (
AttrSource,
GetItemSource,
GlobalSource,
is_constant_source,
TypeSource,
)
from ..utils import (
check_constant_args,
check_numpy_ndarray_args,
check_unspec_or_constant_args,
check_unspec_python_args,
dict_methods,
extract_fake_example_value,
get_fake_value,
guard_if_dyn,
is_wrapper_or_member_descriptor,
istype,
numpy_operator_wrapper,
proxy_args_kwargs,
tensortype_to_dtype,
)
from .base import ValueMutationNew, VariableTracker
from .constant import ConstantVariable
from .ctx_manager import EventVariable, StreamVariable
from .dicts import (
ConstDictVariable,
DefaultDictVariable,
DictViewVariable,
FrozensetVariable,
is_hashable,
SetVariable,
)
from .lists import (
BaseListVariable,
ListIteratorVariable,
ListVariable,
SizeVariable,
TupleIteratorVariable,
TupleVariable,
)
from .tensor import (
FakeItemVariable,
supported_comparison_ops,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .user_defined import UserDefinedObjectVariable, UserDefinedVariable
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
log = logging.getLogger(__name__)
IN_PLACE_DESUGARING_MAP = {
operator.iadd: operator.add,
operator.isub: operator.sub,
operator.imul: operator.mul,
operator.ifloordiv: operator.floordiv,
operator.itruediv: operator.truediv,
operator.imod: operator.mod,
operator.imatmul: operator.imatmul,
operator.ilshift: operator.lshift,
operator.irshift: operator.rshift,
operator.ipow: operator.pow,
operator.iand: operator.and_,
operator.ior: operator.or_,
operator.ixor: operator.xor,
}
class BuiltinVariable(VariableTracker):
_SENTINEL = object()
_nonvar_fields = {
"fn",
*VariableTracker._nonvar_fields,
}
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.BUILTIN_MATCH))
return cls(value, source=source)
@staticmethod
@functools.lru_cache(None)
def _constant_fold_functions():
fns = {
abs,
all,
any,
bool,
callable,
chr,
divmod,
float,
getattr,
int,
len,
max,
min,
ord,
pow,
repr,
round,
str,
str.format,
sum,
type,
operator.abs,
operator.pos,
operator.neg,
operator.not_,
operator.truth,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.sub,
operator.getitem,
operator.length_hint,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
operator.index,
}
from .tensor import supported_comparison_ops
fns.update(supported_comparison_ops.values())
fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
return fns
def can_constant_fold_through(self):
return self.fn in self._constant_fold_functions()
@staticmethod
@functools.lru_cache(None)
def _fx_graph_functions():
fns = {
operator.abs,
operator.pos,
operator.neg,
operator.not_,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.lt,
operator.gt,
operator.ge,
operator.le,
operator.ne,
operator.eq,
operator.sub,
operator.length_hint,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.getitem,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
}
return fns
@staticmethod
@functools.lru_cache(None)
def _binops():
# function -> ([forward name, reverse name, in-place name], in-place op)
fns = {
operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
operator.truediv: (
["__truediv__", "__rtruediv__", "__itruediv__"],
operator.itruediv,
),
operator.floordiv: (
["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
operator.ifloordiv,
),
operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
operator.lshift: (
["__lshift__", "__rlshift__", "__ilshift__"],
operator.ilshift,
),
operator.rshift: (
["__rshift__", "__rrshift__", "__irshift__"],
operator.irshift,
),
# NB: The follow binary operators are not supported for now, since the
# corresponding magic methods aren't defined on SymInt / SymFloat:
# operator.matmul
# divmod
# operator.and_
# operator.or_
# operator.xor
}
return fns
@staticmethod
@functools.lru_cache(None)
def _binop_handlers():
# Multiple dispatch mechanism defining custom binop behavior for certain type
# combinations. Handlers are attempted in order, and will be used if the type checks
# match. They are expected to have the signature:
# fn(tx, arg0: VariableTracker, arg1: VariableTracker) -> VariableTracker
from .dicts import DictKeysVariable, SetVariable
from .functions import BaseUserFunctionVariable, UserFunctionVariable
from .nn_module import NNModuleVariable
from .tensor import supported_const_comparison_ops
from .torch import BaseTorchVariable
from .user_defined import (
UserDefinedClassVariable,
UserDefinedObjectVariable,
UserDefinedVariable,
)
# Override table contains: op_fn -> [list of handlers]
op_handlers = {}
for (
op,
(magic_method_names, in_place_op),
) in BuiltinVariable._binops().items():
op_handlers[op] = []
op_handlers[in_place_op] = []
forward_name, reverse_name, inplace_name = magic_method_names
# User-defined args (highest precedence)
def user_defined_handler(
tx,
a,
b,
*,
forward_name=forward_name,
reverse_name=reverse_name,
):
# Manually handle reversing logic if needed (e.g. call __radd__)
# TODO: If we expand this to handle tensor args, we need to manually
# handle cases like this:
#
# class A(int):
# def __radd__(self, other):
# print("woof")
# torch.randn(3) + A(3)
#
# In this example, A.__radd__() is not called -> nothing is printed, because
# Tensor.__add__ only does a subtype test against int, ignoring the subclass.
# To be fully correct, we should not call A.__radd__() here, and there may be
# other cases to reason about and add exceptions for.
if isinstance(a, UserDefinedVariable):
return a.call_method(tx, forward_name, [b], {})
else:
return b.call_method(tx, reverse_name, [a], {})
op_handlers[op].append(
((UserDefinedVariable, VariableTracker), user_defined_handler)
)
op_handlers[op].append(
((VariableTracker, UserDefinedVariable), user_defined_handler)
)
def user_defined_inplace_handler(
tx: "InstructionTranslator", a, b, *, forward_name=inplace_name
):
return a.call_method(tx, forward_name, [b], {})
op_handlers[in_place_op].append(
((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
)
op_handlers[in_place_op].append(
((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
)
# Dynamic shape args
def dynamic_handler(tx: "InstructionTranslator", a, b, *, fn=op):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function", fn, *proxy_args_kwargs([a, b], {})
),
)
op_handlers[op].append(
((SymNodeVariable, VariableTracker), dynamic_handler)
)
op_handlers[op].append(
((VariableTracker, SymNodeVariable), dynamic_handler)
)
# NB: Prefer out-of-place op when calling in-place op to generate valid graph
op_handlers[in_place_op].append(
((SymNodeVariable, VariableTracker), dynamic_handler)
)
op_handlers[in_place_op].append(
((VariableTracker, SymNodeVariable), dynamic_handler)
)
# Special cases - lower precedence but still prefer these over constant folding
# List-like addition (e.g. [1, 2] + [3, 4])
def tuple_add_handler(tx: "InstructionTranslator", a, b):
return TupleVariable([*a.items, *b.unpack_var_sequence(tx)])
def size_add_handler(tx: "InstructionTranslator", a, b):
return SizeVariable([*a.items, *b.unpack_var_sequence(tx)])
list_like_addition_handlers = [
# NB: Prefer the tuple-specific logic over base logic because of
# some SizeVariable weirdness. Specifically, the tuple-specific logic
# drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
(
(SizeVariable, SizeVariable),
size_add_handler,
),
(
(TupleVariable, TupleVariable),
tuple_add_handler,
),
(
(TupleVariable, ConstantVariable),
tuple_add_handler,
),
(
(ConstantVariable, TupleVariable),
lambda tx, a, b: TupleVariable(
[*a.unpack_var_sequence(tx), *b.items],
),
),
(
(
ListVariable,
(BaseListVariable, ConstantVariable, ListIteratorVariable),
),
lambda tx, a, b: ListVariable(
[*a.items, *b.unpack_var_sequence(tx)],
mutation_type=ValueMutationNew(),
),
),
(
(BaseListVariable, BaseListVariable),
lambda tx, a, b: type(a)([*a.items, *b.items]),
),
]
op_handlers[operator.add].extend(list_like_addition_handlers)
def list_iadd_handler(tx: "InstructionTranslator", a, b):
if a.is_immutable() or not b.has_unpack_var_sequence(tx):
# Handler doesn't apply
return None
seq = b.unpack_var_sequence(tx)
tx.output.side_effects.mutation(a)
a.items.extend(seq)
return a
list_like_iadd_handlers = [
(
(ListVariable, VariableTracker),
list_iadd_handler,
),
(
(TupleVariable, TupleVariable),
tuple_add_handler,
),
(
(TupleVariable, ConstantVariable),
tuple_add_handler,
),
]
op_handlers[operator.iadd].extend(list_like_iadd_handlers)
# List-like expansion (e.g. [1, 2, 3] * 3)
def expand_list_like(tx: "InstructionTranslator", lst, const):
if isinstance(lst, ConstantVariable):
lst, const = const, lst
return lst.__class__(
items=lst.items * const.as_python_constant(),
mutation_type=ValueMutationNew(),
)
list_like_expansion_handlers = [
((ListVariable, ConstantVariable), expand_list_like),
((TupleVariable, ConstantVariable), expand_list_like),
((ConstantVariable, ListVariable), expand_list_like),
((ConstantVariable, TupleVariable), expand_list_like),
]
op_handlers[operator.mul].extend(list_like_expansion_handlers)
size_or_tuple = (SizeVariable, TupleVariable)
has_set_items = (SetVariable, DictKeysVariable)
def create_cmp_op_handlers(op):
def compare_by_value(tx: "InstructionTranslator", a, b):
return ConstantVariable(op(a.value, b.value))
result = [((ConstantVariable, ConstantVariable), compare_by_value)]
if op in supported_const_comparison_ops.values():
# Tensor is None, List is not None, etc
none_result = op(object(), None)
if op.__name__.startswith("is_"):
def never(tx: "InstructionTranslator", a, b):
return ConstantVariable(none_result)
obj_op_none = never
none_op_obj = never
else:
def obj_op_none(
tx: "InstructionTranslator", a, b: ConstantVariable
):
if b.value is None or b.value is True or b.value is False:
return ConstantVariable(none_result)
def none_op_obj(
tx: "InstructionTranslator", a: ConstantVariable, b
):
if a.value is None or a.value is True or a.value is False:
return ConstantVariable(none_result)
types_that_are_never_none = (
TensorVariable,
SymNodeVariable,
NNModuleVariable,
BaseListVariable,
UserDefinedVariable,
BaseUserFunctionVariable,
ConstDictVariable,
BaseTorchVariable,
)
result.extend(
[
(
(types_that_are_never_none, ConstantVariable),
obj_op_none,
),
(
(ConstantVariable, types_that_are_never_none),
none_op_obj,
),
]
)
def list_compare_nocheck(tx: "InstructionTranslator", left, right):
return BaseListVariable.list_compare(tx, op, left, right)
def list_compare_check(tx: "InstructionTranslator", left, right):
if type(left) is not type(
right
): # Mismatch in BaseListVariable subclasses
unimplemented(f"{op.__name__}({left}, {right})")
return BaseListVariable.list_compare(tx, op, left, right)
def compare_set_items(tx: "InstructionTranslator", left, right):
return ConstantVariable(op(left.set_items, right.set_items))
def compare_via_method(tx: "InstructionTranslator", left, right):
return left.call_method(tx, f"__{op.__name__}__", [right], {})
if op.__name__.startswith("is_"):
compare_user_defined = compare_by_value
else:
compare_user_defined = compare_via_method
op_var = BuiltinVariable(op)
result.extend(
[
(
(
(UserFunctionVariable, BuiltinVariable),
(UserFunctionVariable, BuiltinVariable),
),
lambda tx, a, b: ConstantVariable(op(a.fn, b.fn)),
),
(
(
NNModuleVariable,
NNModuleVariable,
),
lambda tx, a, b: ConstantVariable(
op(
tx.output.get_submodule(a.module_key),
tx.output.get_submodule(b.module_key),
)
),
),
((size_or_tuple, size_or_tuple), list_compare_nocheck),
(
(variables.BaseListVariable, variables.BaseListVariable),
list_compare_check,
),
((has_set_items, has_set_items), compare_set_items),
(
(UserDefinedObjectVariable, UserDefinedObjectVariable),
compare_user_defined,
),
(
(UserDefinedClassVariable, UserDefinedClassVariable),
compare_user_defined,
),
(
(
(StreamVariable, EventVariable, ConstantVariable),
(StreamVariable, EventVariable, ConstantVariable),
),
compare_by_value,
),
(
(TensorVariable, VariableTracker),
op_var._comparison_with_tensor,
),
(
(VariableTracker, TensorVariable),
op_var._comparison_with_tensor,
),
(
(SymNodeVariable, VariableTracker),
op_var._comparison_with_symnode,
),
(
(VariableTracker, SymNodeVariable),
op_var._comparison_with_symnode,
),
]
)
if op.__name__.startswith("is_"):
def handle_is(tx: "InstructionTranslator", left, right):
# If the two objects are of different type, we can safely return False
# and True for `is` and `is not`, respectively
if type(left) is not type(right):
return ConstantVariable.create(op.__name__ != "is_")
result.append(((VariableTracker, VariableTracker), handle_is))
return result
for op in supported_comparison_ops.values():
assert callable(op)
assert op not in op_handlers
op_handlers[op] = create_cmp_op_handlers(op)
return op_handlers
@staticmethod
def _find_binop_handler(op, a_type, b_type):
handlers = BuiltinVariable._binop_handlers().get(op)
if handlers is None:
return None
matches = []
for (type1, type2), handler in handlers:
if issubclass(a_type, type1) and issubclass(b_type, type2):
matches.append(handler)
return matches
def can_insert_in_graph(self):
return self.fn in self._fx_graph_functions()
def __init__(self, fn, **kwargs) -> None:
super().__init__(**kwargs)
self.fn = fn
def __repr__(self) -> str:
if self.fn is None:
name = "None"
else:
name = self.fn.__name__
return f"{self.__class__.__name__}({name})"
def as_python_constant(self):
return self.fn
def as_proxy(self):
DTYPE = {
bool: torch.bool,
int: torch.int64,
float: torch.float64,
}
if self.fn in DTYPE:
return DTYPE[self.fn]
return super().as_proxy()
def reconstruct(self, codegen):
name = self.fn.__name__
assert self.fn.__module__ == "builtins"
assert name not in codegen.tx.f_globals, "shadowed global"
codegen.append_output(codegen.create_load_global(name, False, add=True))
def constant_args(self, *args, **kwargs):
return check_constant_args(args, kwargs)
def tensor_args(self, *args):
any_tensor = False
for arg in args:
if isinstance(arg, variables.GetAttrVariable):
return False
any_tensor = any_tensor or isinstance(arg, variables.TensorVariable)
return any_tensor
def tensor_args_type(self, arg_types):
any_tensor = False
for arg_type in arg_types:
if issubclass(arg_type, variables.GetAttrVariable):
return False
any_tensor = any_tensor or issubclass(arg_type, variables.TensorVariable)
return any_tensor
def python_and_tensor_constant_only(self, *args, **kwargs):
tensor_args = []
non_tensor_args = []
for i in itertools.chain(args, kwargs.values()):
if isinstance(i, variables.TensorVariable):
tensor_args.append(i)
else:
non_tensor_args.append(i)
return all(
is_constant_source(t.source) if t.source is not None else False
for t in tensor_args
) and self.constant_args(*non_tensor_args)
@staticmethod
def unwrap_unspec_args_kwargs(args, kwargs):
return [x.as_python_constant() for x in args], {
k: v.as_python_constant() for k, v in kwargs.items()
}
def has_constant_handler(self, args, kwargs):
return self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
)
@staticmethod
def _make_handler(fn, arg_types: list[type], has_kwargs: bool):
from .lazy import LazyVariableTracker
obj = BuiltinVariable(fn)
handlers = []
if any(issubclass(t, LazyVariableTracker) for t in arg_types):
return lambda tx, args, kwargs: obj.call_function(
tx, [v.realize() for v in args], kwargs
)
if inspect.isclass(fn) and issubclass(fn, Exception):
def create_exception_class_object(
tx: "InstructionTranslator", args, kwargs
):
if fn is AssertionError and not all(
isinstance(x, variables.ConstantVariable)
and isinstance(x.value, str)
for x in args
):
unimplemented("assert with non-string message")
return variables.ExceptionVariable(fn, args, **kwargs)
return create_exception_class_object
if obj.can_insert_in_graph() and not (
fn is operator.getitem
and not issubclass(arg_types[0], variables.TensorVariable)
):
if obj.tensor_args_type(arg_types):
return obj._handle_insert_op_in_graph
elif has_kwargs:
# need runtime check for kwargs
handlers.append(obj._handle_insert_op_in_graph)
# Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
# NB: Tensor args are handled above and not here
if len(arg_types) == 2 and not has_kwargs:
# Try to find a handler for the arg types; otherwise, fall through to constant handler
binop_handlers = BuiltinVariable._find_binop_handler(fn, *arg_types)
if not binop_handlers:
pass
elif len(binop_handlers) == 1:
(binop_handler,) = binop_handlers
handlers.append(lambda tx, args, _: binop_handler(tx, *args))
else:
def call_binop_handlers(tx: "InstructionTranslator", args, _):
for fn in binop_handlers:
rv = fn(tx, *args)
if rv:
return rv
handlers.append(call_binop_handlers)
self_handler = getattr(obj, f"call_{fn.__name__}", None)
if self_handler:
def call_self_handler(tx: "InstructionTranslator", args, kwargs):
try:
result = self_handler(tx, *args, **kwargs)
if result is not None:
return result
except TypeError:
# Check if binding is bad. inspect signature bind is expensive.
# So check only when handler call fails.
try:
inspect.signature(self_handler).bind(tx, *args, **kwargs)
except TypeError as e:
has_constant_handler = obj.has_constant_handler(args, kwargs)
if not has_constant_handler:
log.warning(
"incorrect arg count %s %s and no constant handler",
self_handler,
e,
)
unimplemented(
f"invalid handler args {self_handler} {args} {kwargs}"
)
else:
raise
except Unsupported as exc:
has_constant_handler = obj.has_constant_handler(args, kwargs)
if not has_constant_handler:
raise
# Actually, we will handle this just fine
exc.remove_from_stats()
handlers.append(call_self_handler)
if obj.can_constant_fold_through():
if (
all(issubclass(x, ConstantVariable) for x in arg_types)
and not has_kwargs
):
def constant_fold_handler(tx: "InstructionTranslator", args, kwargs):
# fast path
try:
res = fn(
*[x.as_python_constant() for x in args],
)
except Exception as exc:
unimplemented(f"constant fold exception: {repr(exc)}")
return VariableTracker.build(tx, res)
else:
def constant_fold_handler(tx: "InstructionTranslator", args, kwargs):
# path with a runtime check
if check_unspec_or_constant_args(args, kwargs):
try:
res = fn(
*[x.as_python_constant() for x in args],
**{
k: v.as_python_constant() for k, v in kwargs.items()
},
)
except Exception as exc:
unimplemented(f"constant fold exception: {repr(exc)}")
return VariableTracker.build(tx, res)
handlers.append(constant_fold_handler)
error_msg = f"builtin: {fn.__name__} {arg_types} {has_kwargs}"
if len(handlers) == 0:
return lambda *args: unimplemented(error_msg)
elif len(handlers) == 1:
(handler,) = handlers
def builtin_dispatch(tx: "InstructionTranslator", args, kwargs):
rv = handler(tx, args, kwargs)
if rv:
return rv
unimplemented(error_msg)
else:
def builtin_dispatch(tx: "InstructionTranslator", args, kwargs):
for fn in handlers:
rv = fn(tx, args, kwargs)
if rv:
return rv
unimplemented(error_msg)
return builtin_dispatch
def _handle_insert_op_in_graph(self, tx: "InstructionTranslator", args, kwargs):
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
if kwargs and not self.tensor_args(*args, *kwargs.values()):
return
# insert handling for torch function here
from .builder import SourcelessBuilder
from .torch_function import (
BUILTIN_TO_TENSOR_FN_MAP,
BUILTIN_TO_TENSOR_RFN_MAP,
can_dispatch_torch_function,
dispatch_torch_function,
)
if can_dispatch_torch_function(tx, args, kwargs):
# Only remap the fn to tensor methods if we aren't exporting
# export serde does not handle method descriptors today
if not tx.export:
# Use sourceless builder, we built the map ourselves
if not isinstance(args[0], TensorVariable):
if self.fn in BUILTIN_TO_TENSOR_RFN_MAP:
func = BUILTIN_TO_TENSOR_RFN_MAP[self.fn]
else:
func = BUILTIN_TO_TENSOR_FN_MAP[self.fn]
tmp = args[0]
# swap args and call reverse version of func
args[0] = args[1]
args[1] = tmp
else:
func = BUILTIN_TO_TENSOR_FN_MAP[self.fn]
else:
func = self.fn
fn_var = SourcelessBuilder.create(tx, func)
return dispatch_torch_function(tx, fn_var, args, kwargs)
fn = self.fn
try:
# Constant fold for constant tensor and python constants
if self.python_and_tensor_constant_only(*args, **kwargs):
from ..bytecode_transformation import unique_id
from .functions import invoke_and_store_as_constant
return invoke_and_store_as_constant(
tx, fn, unique_id(fn.__name__), args, kwargs
)
if fn in IN_PLACE_DESUGARING_MAP and isinstance(
args[0], variables.ConstantVariable
):
# In-place operators like += usually mustate tensor
# values, but in the edge case of immutable values they
# re-bind the variable.
#
# The easiest way to keep the graph consistent in this
# scenario is to de-sugar eagerly.
fn, args = IN_PLACE_DESUGARING_MAP[fn], [args[0], args[1]]
if fn is operator.getitem and isinstance(args[1], SymNodeVariable):
# Standard indexing will force specialization due to
# __index__. Rewrite as a regular torch op which will
# trace fine
fn, args = torch.select, [
args[0],
variables.ConstantVariable.create(0),
args[1],
]
# Interaction between ndarray and tensors:
# We prefer the tensor op whenever there are tensors involved
if check_numpy_ndarray_args(args, kwargs) and not any(
type(arg) == variables.TensorVariable for arg in args
):
proxy = tx.output.create_proxy(
"call_function",
numpy_operator_wrapper(fn),
*proxy_args_kwargs(args, kwargs),
)
return wrap_fx_proxy_cls(variables.NumpyNdarrayVariable, tx, proxy)
proxy = tx.output.create_proxy(
"call_function",
fn,
*proxy_args_kwargs(args, kwargs),
)
if any(isinstance(arg, FakeItemVariable) for arg in args):
return wrap_fx_proxy_cls(
FakeItemVariable,
tx,
proxy,
)
elif check_unspec_python_args(args, kwargs):
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
raw_value = fn(*_args, **_kwargs)
need_unwrap = any(
x.need_unwrap
for x in itertools.chain(args, kwargs.values())
if isinstance(x, variables.UnspecializedPythonVariable)
)
return wrap_fx_proxy_cls(
UnspecializedPythonVariable,
tx,
proxy,
raw_value=raw_value,
need_unwrap=need_unwrap,
)
elif all(isinstance(x, SymNodeVariable) for x in args):
return SymNodeVariable.create(tx, proxy, None)
else:
# Work around for vision_maskrcnn due to precision difference
# specialize the dividend when float divide by tensor
if fn is operator.truediv and isinstance(
args[0], variables.UnspecializedPythonVariable
):
args[0] = args[0].convert_to_constant(tx)
return wrap_fx_proxy(tx, proxy)
except NotImplementedError:
unimplemented(f"partial tensor op: {self} {args} {kwargs}")
call_function_handler_cache = {}
def call_function(
self,
tx: "InstructionTranslator",
args: "list[VariableTracker]",
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
if kwargs:
kwargs = {k: v.realize() for k, v in kwargs.items()}
key = (self.fn, *(type(x) for x in args), True)
else:
key = (self.fn, *(type(x) for x in args))
handler = self.call_function_handler_cache.get(key)
if not handler:
self.call_function_handler_cache[key] = handler = self._make_handler(
self.fn, [type(x) for x in args], bool(kwargs)
)
return handler(tx, args, kwargs)
def call_method(
self,
tx,
name,
args: "list[VariableTracker]",
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
if self.fn is object and name == "__setattr__":
assert len(args) == 3
assert len(kwargs) == 0
obj, name_var, val = args
obj = obj.realize()
if (
isinstance(obj, UserDefinedObjectVariable)
and tx.output.side_effects.is_attribute_mutation(obj)
and name_var.is_python_constant()
):
return obj.method_setattr_standard(tx, name_var, val)
if self.fn is object and name == "__new__":
assert len(args) == 1
assert len(kwargs) == 0
return tx.output.side_effects.track_object_new_from_user_defined_class(
args[0]
)
if self.fn is dict and name == "__new__":
assert len(args) == 1
assert len(kwargs) == 0
dict_vt = ConstDictVariable({}, dict, mutation_type=ValueMutationNew())
if isinstance(args[0], BuiltinVariable) and args[0].fn is dict:
return dict_vt
# We don't have to set the underlying dict_vt in
# UserDefinedDictVariable because it will be set to empty
# ConstDictVariableTracker in the constructor.
return tx.output.side_effects.track_object_new_from_user_defined_class(
args[0]
)
if self.fn is dict and name == "fromkeys":
return BuiltinVariable.call_custom_dict_fromkeys(tx, dict, *args, **kwargs)
if self.fn is dict:
resolved_fn = getattr(self.fn, name)
if resolved_fn in dict_methods:
if isinstance(args[0], variables.UserDefinedDictVariable):
return args[0]._dict_vt.call_method(tx, name, args[1:], kwargs)
elif isinstance(args[0], variables.ConstDictVariable):
return args[0].call_method(tx, name, args[1:], kwargs)
if self.fn is tuple:
resolved_fn = getattr(self.fn, name)
if (
resolved_fn is tuple.__new__
and len(args) == 2
and args[1].has_unpack_var_sequence(tx)
and not kwargs
):
init_args = args[1].unpack_var_sequence(tx)
tuple_vt = variables.TupleVariable(
init_args, mutation_type=ValueMutationNew()
)
if isinstance(args[0], BuiltinVariable) and args[0].fn is tuple:
return tuple_vt
result = (
tx.output.side_effects.track_object_new_from_user_defined_class(
args[0]
)
)
# side_effects data structure does not support methods like
# tuple.__new__ that uses *args parameters for the __new__
# method. Therefore, we manage the *args related functionality
# here. For other datastructures, this is done in the __init__
# method.
result.set_new_args(args[1])
result.set_underlying_tuple_vt(tuple_vt)
return result
return super().call_method(tx, name, args, kwargs)
def _call_int_float(self, tx: "InstructionTranslator", arg):
# Handle cases like int(torch.seed())
# Also handle sym_float to sym_int cases
if isinstance(arg, (SymNodeVariable, variables.TensorVariable)):
if isinstance(arg, variables.TensorVariable):
item = arg.call_method(tx, "item", [], {})
else:
item = arg
fn_ = sym_int if self.fn is int else sym_float
from torch._dynamo.variables.builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
(item.as_proxy(),),
{},
),
)
call_int = _call_int_float
call_float = _call_int_float
def call_str(self, tx: "InstructionTranslator", arg):
# Handle `str` on a user defined function or object
if isinstance(arg, (variables.UserFunctionVariable)):
return variables.ConstantVariable.create(value=str(arg.fn))
elif isinstance(arg, (variables.UserDefinedObjectVariable)):
# Check if object has __str__ method
if hasattr(arg.value, "__str__"):
str_method = arg.value.__str__
elif hasattr(arg.value, "__repr__"):
# account for __repr__ functions when __str__ is absent
str_method = arg.value.__repr__
else:
unimplemented("user defined object has no __str__ or __repr__ method")
if type(arg.value).__str__ is object.__str__:
# Rely on the object str method
try:
return variables.ConstantVariable.create(value=str_method())
except AttributeError:
# Graph break
return
elif is_wrapper_or_member_descriptor(str_method):
unimplemented(f"{type(arg.value)} has a C/C++ based str method")
else:
# Overrides for custom str method
# Pass method as function to call tx.inline_user_function_return
bound_method = str_method.__func__
try:
# Only supports certain function types
user_func_variable = variables.UserFunctionVariable(bound_method)
except AssertionError as e:
# Won't be able to do inline the str method, return to avoid graph break
log.warning("Failed to create UserFunctionVariable: %s", e)
return
# Inline the user function
return tx.inline_user_function_return(user_func_variable, [arg], {})
def _call_min_max(self, tx: "InstructionTranslator", *args):
if len(args) == 1 and args[0].has_force_unpack_var_sequence(tx):
items = args[0].force_unpack_var_sequence(tx)
return self._call_min_max_seq(tx, items)
elif len(args) == 2:
return self._call_min_max_binary(tx, args[0], args[1])
elif len(args) > 2:
return self._call_min_max_seq(tx, args)
def _call_min_max_seq(self, tx: "InstructionTranslator", items):
assert len(items) > 0
if len(items) == 1:
return items[0]
return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)
def _call_min_max_binary(self, tx: "InstructionTranslator", a, b):
if a is None or b is None:
# a or b could be none if we reduce and _call_min_max_binary failed
# to return something
return
if self.tensor_args(a, b):
if not isinstance(a, variables.TensorVariable):
a, b = b, a
assert isinstance(a, variables.TensorVariable)
# result of an item call is a scalar convert to a tensor
if isinstance(a, FakeItemVariable):
a = variables.TorchInGraphFunctionVariable(torch.tensor).call_function(
tx, [a], {}
)
# Dynamic input does not get resolved, rather, gets stored as call_function
if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
from .builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
type(a),
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.fn,
*proxy_args_kwargs([a, b], {}),
),
)
# convert min/max to torch ops
if b.is_python_constant():
if isinstance(a, variables.NumpyNdarrayVariable):
import numpy as np
fn = variables.NumpyVariable(np.clip)
else:
fn = variables.TorchInGraphFunctionVariable(torch.clamp)
kwargs = {"min": b} if (self.fn is max) else {"max": b}
result = fn.call_function(tx, [a], kwargs)
else:
if isinstance(a, variables.NumpyNdarrayVariable):
import numpy as np
fn = {max: np.maximum, min: np.minimum}[self.fn]
fn = variables.NumpyVariable(fn)
else:
fn = {max: torch.maximum, min: torch.minimum}[self.fn]
fn = variables.TorchInGraphFunctionVariable(fn)
result = fn.call_function(tx, [a, b], {})
# return unspec if both a, b are unspec or const
if all(
isinstance(
i,
(
variables.UnspecializedPythonVariable,
variables.ConstantVariable,
),
)
for i in [a, b]
):
if any(isinstance(val, FakeItemVariable) for val in [a, b]):
return variables.FakeItemVariable.from_tensor_variable(result)
if b.is_python_constant():
raw_b = b.as_python_constant()
else:
raw_b = b.raw_value
if self.fn is max:
raw_res = max(a.raw_value, raw_b)
else:
raw_res = min(a.raw_value, raw_b)
need_unwrap = any(
x.need_unwrap
for x in [a, b]
if isinstance(x, variables.UnspecializedPythonVariable)
)
return variables.UnspecializedPythonVariable.from_tensor_variable(
result, raw_res, need_unwrap
)
# otherwise return tensor
else:
return result
elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
fn = torch.sym_max if self.fn is max else torch.sym_min
proxy = tx.output.create_proxy(
"call_function", fn, *proxy_args_kwargs([a, b], {})
)
return SymNodeVariable.create(tx, proxy, None)
elif isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
value = self.fn(
a.as_python_constant(),
b.as_python_constant(),
)
return ConstantVariable(value)
call_min = _call_min_max
call_max = _call_min_max
def call_abs(self, tx: "InstructionTranslator", arg: "VariableTracker"):
# Call arg.__abs__()
abs_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__abs__")], {}
)
return abs_method.call_function(tx, [], {})
def call_pos(self, tx: "InstructionTranslator", arg: "VariableTracker"):
# Call arg.__pos__()
pos_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__pos__")], {}
)
return pos_method.call_function(tx, [], {})
def call_index(self, tx: "InstructionTranslator", arg: "VariableTracker"):
if isinstance(arg, variables.TensorVariable):
unimplemented("unsupported index(tensor)")
arg = guard_if_dyn(arg)
constant_value = operator.index(arg)
return variables.ConstantVariable.create(constant_value)
def call_round(self, tx: "InstructionTranslator", arg, *args, **kwargs):
# Call arg.__round__()
round_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__round__")], {}
)
return round_method.call_function(tx, args, kwargs)
def call_range(self, tx: "InstructionTranslator", *args):
if check_unspec_or_constant_args(args, {}):
return variables.RangeVariable(args)
elif self._dynamic_args(*args):
args = [
variables.ConstantVariable.create(guard_if_dyn(arg)) for arg in args
]
return variables.RangeVariable(args)
# None no-ops this handler and lets the driving function proceed
return None
def _dynamic_args(self, *args, **kwargs):
return any(isinstance(x, SymNodeVariable) for x in args) or any(
isinstance(x, SymNodeVariable) for x in kwargs.values()
)
def call_slice(self, tx: "InstructionTranslator", *args):
return variables.SliceVariable(args)
def _dyn_proxy(self, tx: "InstructionTranslator", *args, **kwargs):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function", self.fn, *proxy_args_kwargs(args, kwargs)
),
)
# NOTE must handle IteratorVariable separately!
def _call_iter_tuple_list(
self, tx: "InstructionTranslator", obj=None, *args, **kwargs
):
assert not isinstance(obj, variables.IteratorVariable)
if self._dynamic_args(*args, **kwargs):
return self._dyn_proxy(tx, *args, **kwargs)
cls = variables.BaseListVariable.cls_for(self.fn)
if obj is None:
return cls(
[],
mutation_type=ValueMutationNew(),
)
elif obj.has_unpack_var_sequence(tx):
if obj.source and not is_constant_source(obj.source):
if isinstance(obj, TupleIteratorVariable):
install_guard(
obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)
)
else:
if (
getattr(obj, "source", False)
and isinstance(obj, ConstDictVariable)
and not istype(obj, SetVariable)
):
tx.output.guard_on_key_order.add(obj.source.name())
install_guard(obj.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
return cls(
list(obj.unpack_var_sequence(tx)),
mutation_type=ValueMutationNew(),
)
def _call_tuple_list(self, tx, obj=None, *args, **kwargs):
if isinstance(obj, variables.IteratorVariable):
cls = variables.BaseListVariable.cls_for(self.fn)
return cls(
list(obj.force_unpack_var_sequence(tx)),
mutation_type=ValueMutationNew(),
)
else:
return self._call_iter_tuple_list(tx, obj, *args, **kwargs)
def call_iter(self, tx: "InstructionTranslator", obj, *args, **kwargs):
if isinstance(obj, variables.IteratorVariable):
ret = obj
else:
# Handle the case where we are iterating over a tuple, list or iterator
ret = self._call_iter_tuple_list(tx, obj, *args, **kwargs)
if ret is None:
# If the object doesn't implement a __iter__ method, it will be an error in eager mode when calling iter on it anyway.
# If the object implements a __iter__ method, inlining effectively forwards the call to another iter call
# (e.g. when __iter__ just returns iter(self.list)) or return a user-defined iterator.
return obj.call_method(tx, "__iter__", args, kwargs)
return ret
call_tuple = _call_tuple_list
call_list = _call_tuple_list
def call_callable(self, tx: "InstructionTranslator", arg):
from .functions import BaseUserFunctionVariable
from .nn_module import NNModuleVariable
if isinstance(
arg,
(
variables.UserDefinedClassVariable,
BaseUserFunctionVariable,
NNModuleVariable,
),
):
return variables.ConstantVariable.create(True)
elif isinstance(arg, UserDefinedVariable):
return variables.ConstantVariable.create(callable(arg.value))
elif isinstance(
arg,
(
ConstantVariable,
SymNodeVariable,
TensorVariable,
ListVariable,
TupleVariable,
ListIteratorVariable,
),
):
return variables.ConstantVariable.create(False)
def call_cast(self, _, *args, **kwargs):
if len(args) == 2:
return args[1]
unimplemented(f"unsupported args to builtin cast(): {args} {kwargs}")
def call_dict(self, tx: "InstructionTranslator", *args, **kwargs):
return BuiltinVariable.call_custom_dict(tx, dict, *args, **kwargs)
@staticmethod
def call_custom_dict(tx: "InstructionTranslator", user_cls, *args, **kwargs):
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.construct_dict),
[VariableTracker.build(tx, user_cls), *args],
kwargs,
)
@staticmethod
def call_custom_dict_fromkeys(
tx: "InstructionTranslator", user_cls, *args, **kwargs
):
assert user_cls in {dict, OrderedDict, defaultdict}
if kwargs:
# Only `OrderedDict.fromkeys` accepts `value` passed by keyword
assert user_cls is OrderedDict
assert len(args) == 1 and len(kwargs) == 1 and "value" in kwargs
args = (*args, kwargs.pop("value"))
if len(args) == 0:
raise UserError(TypeError, "fromkeys expected at least 1 argument, got 0")
if len(args) == 1:
args = (*args, ConstantVariable.create(None))
assert len(args) == 2
arg, value = args
DictVariableType = (
ConstDictVariable if user_cls is not defaultdict else DefaultDictVariable
)
if isinstance(arg, dict):
arg = [ConstantVariable.create(k) for k in arg.keys()]
return DictVariableType(
dict.fromkeys(arg, value), user_cls, mutation_type=ValueMutationNew()
)
elif arg.has_force_unpack_var_sequence(tx):
keys = arg.force_unpack_var_sequence(tx)
if all(is_hashable(v) for v in keys):
return DictVariableType(
dict.fromkeys(keys, value),
user_cls,
mutation_type=ValueMutationNew(),
)
unimplemented(f"{user_cls.__name__}.fromkeys(): {args} {kwargs}")
def call_set(self, tx: "InstructionTranslator", *args, **kwargs):
# Can we merge this implementation and call_dict's one?
assert not kwargs
if not args:
return SetVariable([], mutation_type=ValueMutationNew())
assert len(args) == 1
arg = args[0]
if isinstance(arg, variables.SetVariable):
return arg.clone(mutation_type=ValueMutationNew())
elif arg.has_force_unpack_var_sequence(tx):
items = arg.force_unpack_var_sequence(tx)
return SetVariable(items, mutation_type=ValueMutationNew())
elif isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
arg.value, KeysView
):
iter_fn = arg.var_getattr(tx, "__iter__")
if isinstance(iter_fn, variables.UserMethodVariable):
out = tx.inline_user_function_return(iter_fn, args, kwargs)
if isinstance(out, SetVariable):
return out
return BuiltinVariable(set).call_set(tx, out)
else:
unimplemented(f"set(): {args} {kwargs}")
else:
unimplemented(f"set(): {args} {kwargs}")
def call_frozenset(self, tx: "InstructionTranslator", *args, **kwargs):
assert not kwargs
if not args:
return FrozensetVariable([])
assert len(args) == 1
arg = args[0]
if isinstance(arg, variables.FrozensetVariable):
return FrozensetVariable([x.vt for x in arg.set_items])
elif arg.has_unpack_var_sequence(tx):
items = arg.unpack_var_sequence(tx)
return FrozensetVariable(items)
else:
unimplemented(f"frozenset(): {args} {kwargs}")
def call_zip(self, tx: "InstructionTranslator", *args, **kwargs):
if kwargs:
assert len(kwargs) == 1 and "strict" in kwargs
strict = kwargs.pop("strict", False)
args = [
arg.unpack_var_sequence(tx) if arg.has_unpack_var_sequence(tx) else arg
for arg in args
]
return variables.ZipVariable(
args, strict=strict, mutation_type=ValueMutationNew()
)
def call_len(self, tx: "InstructionTranslator", *args, **kwargs):
return args[0].call_method(tx, "__len__", args[1:], kwargs)
def call_getitem(self, tx: "InstructionTranslator", *args, **kwargs):
return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
def call_isinstance(self, tx: "InstructionTranslator", arg, isinstance_type):
try:
arg_type = arg.python_type()
except NotImplementedError:
unimplemented(
f"isinstance({arg}, {isinstance_type}): can't determine type of {arg}"
)
isinstance_type = isinstance_type.as_python_constant()
if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
def _tensor_isinstance(tensor_var, tensor_type):
def check_type(ty):
if ty not in tensortype_to_dtype:
example_val = arg.as_proxy().node.meta["example_value"]
if (
is_traceable_wrapper_subclass(example_val)
and ty is torch.nn.parameter.Parameter
):
# N.B: we are calling isinstance directly on the example value.
# torch.nn.Parameter has a meta-class that overrides __isinstance__,
# the isinstance check here allows us to invoke that logic.
return isinstance(example_val, ty)
else:
return issubclass(arg.python_type(), ty)
dtypes = tensortype_to_dtype[ty]
return arg.dtype in dtypes
if type(tensor_type) is tuple:
return any(check_type(ty) for ty in tensor_type)
else:
return check_type(tensor_type)
return variables.ConstantVariable.create(
_tensor_isinstance(arg, isinstance_type)
)
# UserDefinedObject with C extensions can have torch.Tensor attributes,
# so break graph.
if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
arg.value, types.MemberDescriptorType
):
unimplemented(
f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
)
# handle __instancecheck__ defined in user class
if (
isinstance(arg, variables.UserDefinedObjectVariable)
and "__instancecheck__" in isinstance_type.__class__.__dict__
):
return variables.ConstantVariable.create(
isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
)
try:
val = issubclass(arg_type, isinstance_type)
except TypeError:
val = arg_type is isinstance_type
return variables.ConstantVariable.create(val)
def call_issubclass(self, tx: "InstructionTranslator", left_ty, right_ty):
"""Checks if first arg is subclass of right arg"""
try:
left_ty_py = left_ty.as_python_constant()
right_ty_py = right_ty.as_python_constant()
except NotImplementedError:
unimplemented(
f"call_issubclass args not constant left_ty: {left_ty}, right_ty: {right_ty}"
)
return variables.ConstantVariable(issubclass(left_ty_py, right_ty_py))
def call_super(self, tx: "InstructionTranslator", a, b):
return variables.SuperVariable(a, b)
def call_next(self, tx: "InstructionTranslator", arg: VariableTracker):
try:
return arg.next_variable(tx)
except Unsupported as ex:
if isinstance(arg, variables.BaseListVariable):
ex.remove_from_stats()
return arg.items[0]
raise
def call_hasattr(self, tx: "InstructionTranslator", obj, attr):
if attr.is_python_constant():
name = attr.as_python_constant()
if isinstance(obj, variables.BuiltinVariable):
return variables.ConstantVariable(hasattr(obj.fn, name))
return obj.call_hasattr(tx, name)
def call_map(self, tx: "InstructionTranslator", fn, *seqs):
seqs = [
seq.unpack_var_sequence(tx) if seq.has_unpack_var_sequence(tx) else seq
for seq in seqs
]
return variables.MapVariable(fn, seqs, mutation_type=ValueMutationNew())
def call_filter(self, tx: "InstructionTranslator", fn, seq):
seq = seq.unpack_var_sequence(tx) if seq.has_unpack_var_sequence(tx) else seq
return variables.FilterVariable(fn, seq, mutation_type=ValueMutationNew())
def call_getattr(
self,
tx: "InstructionTranslator",
obj: VariableTracker,
name_var: VariableTracker,
default=None,
):
name = name_var.as_python_constant()
if not name_var.is_python_constant():
unimplemented("non-const getattr() name")
if tx.output.side_effects.is_attribute_mutation(obj):
if isinstance(obj, variables.UnspecializedNNModuleVariable):
if (
name
in (
"named_parameters",
"parameters",
"named_buffers",
"buffers",
"named_modules",
"modules",
)
and obj.is_state_mutated
and tx.output.side_effects.has_pending_mutation(obj)
):
unimplemented(
f"pending mutation on nn module, so graph breaking at {name!r} call"
)
if tx.output.side_effects.has_pending_mutation_of_attr(obj, name):
return tx.output.side_effects.load_attr(obj, name)
if default is not None:
hasattr_var = self.call_hasattr(tx, obj, name_var)
assert hasattr_var.as_python_constant() in (True, False)
if not hasattr_var.as_python_constant():
return default
source = obj.source and AttrSource(obj.source, name)
if name in {"__bases__", "__base__", "__flags__"}:
try:
value = obj.as_python_constant()
if isinstance(value, type):
if name == "__bases__":
tuple_args = [
VariableTracker.build(
tx, b, source and GetItemSource(source, i)
)
for i, b in enumerate(value.__bases__)
]
return variables.TupleVariable(tuple_args, source=source)
if name == "__base__":
return VariableTracker.build(tx, value.__base__, source)
if name == "__flags__":
return ConstantVariable.create(value.__flags__)
except NotImplementedError:
pass
if isinstance(obj, variables.NNModuleVariable):
return obj.var_getattr(tx, name)
elif isinstance(
obj,
(
variables.TensorVariable,
variables.NamedTupleVariable,
variables.ConstantVariable,
variables.DistributedVariable,
variables.UserDefinedClassVariable,
variables.UserDefinedObjectVariable,
),
):
try:
return obj.var_getattr(tx, name)
except NotImplementedError:
return variables.GetAttrVariable(obj, name, source=source)
elif isinstance(obj, variables.TorchInGraphFunctionVariable):
# Get OpOverload from an OpOverloadPacket, e.g., torch.ops.aten.add.default.
member = getattr(obj.value, name)
if isinstance(
member, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
) and torch._dynamo.trace_rules.is_aten_op_or_tensor_method(member):
return variables.TorchInGraphFunctionVariable(member, source=source)
elif isinstance(obj, DummyModule):
# TODO(mlazos) - Do we need this?
if obj.is_torch or name not in obj.value.__dict__:
member = getattr(obj.value, name)
else:
member = obj.value.__dict__[name]
if config.replay_record_enabled:
tx.exec_recorder.record_module_access(obj.value, name, member)
return VariableTracker.build(tx, member, source)
elif istype(obj, variables.UserFunctionVariable) and name in (
"__name__",
"__module__",
):
return ConstantVariable.create(getattr(obj.fn, name))
else:
try:
return obj.var_getattr(tx, name)
except NotImplementedError:
return variables.GetAttrVariable(obj, name, source=source)
def call_setattr(
self,
tx: "InstructionTranslator",
obj: VariableTracker,
name_var: VariableTracker,
val: VariableTracker,
):
if isinstance(
obj,
(
variables.PlacementVariable,
variables.NamedTupleVariable,
variables.UserDefinedObjectVariable,
),
):
return obj.call_method(tx, "__setattr__", [name_var, val], {})
elif (
tx.output.side_effects.is_attribute_mutation(obj)
and name_var.is_python_constant()
):
name = name_var.as_python_constant()
if isinstance(obj, variables.TensorVariable):
from .builder import wrap_fx_proxy
if name == "requires_grad":
# TODO(voz): Make it work properly
unimplemented(
"mutating requires_grad can introduce a new leaf from non-leaf or vice versa in "
"the middle of the graph, which aot_autograd does not currently know how to handle. "
)
if name == "data":
# Remove the old reference in tracked fakes - if we don't do this
# new .data value size and shape differences will cause
# tracked fakes to produce incorrect guards. This is sound because the TensorVariable
# coming out of set_() below will be a new one, and get
# installed in tracked fakes.
to_remove = [
tf for tf in tx.output.tracked_fakes if tf.source == obj.source
]
for tf in to_remove:
tx.output.tracked_fakes.remove(tf)
# Step 1 - disable grads
with dynamo_disable_grad(tx), torch.no_grad():
# Step 2 - call `set_`
out = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
torch.Tensor.set_,
*proxy_args_kwargs([obj, val], {}),
),
)
# Step 3 - drop the version counter - this is a step required to get
# .data setting to play correctly with the autograd engine.
# Essentially, dynamo is trying to faithfully preserve the (absurd)
# behavior of .data= from eager mode
def _lower_version_count_by_1(x):
version = x._version
if version > 0:
version = version - 1
torch._C._autograd._unsafe_set_version_counter(x, version)
return x
tx.output.create_proxy(
"call_function",
_lower_version_count_by_1,
(out.as_proxy(),),
{},
)
_lower_version_count_by_1(obj.as_proxy().node.meta["example_value"])
# This handles options prop, guards and ends with a clone
# Step 4 - replace all reference to the current object with the new one
return out
tx.output.side_effects.store_attr(obj, name, val)
if name == "_grad":
tx.output.side_effects.store_attr(obj, "grad", val)
return val
elif isinstance(obj, variables.UserDefinedObjectVariable):
unimplemented(
f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
)
elif isinstance(obj, variables.NNModuleVariable):
if not tx.output.is_root_tracer():
raise AttributeMutationError(
"Can't inplace modify module params/buffers inside HigherOrderOp"
)
if name_var.is_python_constant() and isinstance(
val, variables.TensorVariable
):
assigning_fake_val = get_fake_value(val.as_proxy().node, tx)
try:
getattr_var = obj.var_getattr(tx, name_var.as_python_constant())
except AttributeError:
getattr_var = None
if isinstance(getattr_var, variables.TensorVariable):
# get_fake_val will get the same fake tensor
existing_fake_attr = get_fake_value(getattr_var.as_proxy().node, tx)
# same tensor identiy, setattr is a no-op
mod_setattr = inspect.getattr_static(obj.module_type, "__setattr__")
if (
existing_fake_attr is assigning_fake_val
and mod_setattr is torch.nn.Module.__setattr__
):
return getattr_var
obj.convert_to_unspecialized(tx)
def call_delattr(
self,
tx: "InstructionTranslator",
obj: VariableTracker,
name_var: VariableTracker,
):
return self.call_setattr(tx, obj, name_var, variables.DeletedVariable())
def call_type(self, tx: "InstructionTranslator", obj: VariableTracker):
try:
py_type = obj.python_type()
except NotImplementedError as error:
raise UserError(
UserErrorType.INVALID_INPUT,
str(error),
case_name="unknown_python_type",
) from None
source = obj.source and TypeSource(obj.source)
if py_type is torch.Tensor:
# In some cases torch isn't available in globals
name = tx.output.install_global_by_id("", torch)
source = AttrSource(GlobalSource(name), "Tensor")
return VariableTracker.build(tx, py_type, source)
def call_reversed(self, tx: "InstructionTranslator", obj: VariableTracker):
if obj.has_unpack_var_sequence(tx):
items = list(reversed(obj.unpack_var_sequence(tx)))
return variables.TupleVariable(items)
def call_sorted(
self,
tx: "InstructionTranslator",
obj: VariableTracker,
**kwargs: VariableTracker,
):
if obj.has_force_unpack_var_sequence(tx) and not isinstance(
obj, variables.TensorVariable
):
list_var = variables.ListVariable(
obj.force_unpack_var_sequence(tx),
mutation_type=ValueMutationNew(),
)
list_var.call_method(tx, "sort", [], kwargs)
return list_var
# neg is a constant fold function, so we only get here if constant fold is not valid
def call_neg(self, tx: "InstructionTranslator", a):
if isinstance(a, SymNodeVariable):
return SymNodeVariable.create(
tx,
(operator.neg)(a.as_proxy()),
sym_num=None,
)
# None no-ops this handler and lets the driving function proceed
return None
def call_format(self, tx: "InstructionTranslator", _format_string, *args, **kwargs):
format_string = _format_string.as_python_constant()
format_string = str(format_string)
return variables.StringFormatVariable.create(format_string, args, kwargs)
def call_id(self, tx: "InstructionTranslator", *args):
if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
nn_mod_variable = args[0]
mod = tx.output.get_submodule(nn_mod_variable.module_key)
return variables.ConstantVariable.create(id(mod))
elif len(args) == 1 and isinstance(
args[0], variables.UserDefinedObjectVariable
):
install_guard(args[0].source.make_guard(GuardBuilder.ID_MATCH))
constant_result = id(args[0].value)
return variables.ConstantVariable.create(constant_result)
elif len(args) == 1 and isinstance(args[0], TensorVariable):
tensor_variable = args[0]
return tensor_variable.call_id(tx)
else:
unimplemented(f"call_id with args {args}")
def call_deepcopy(self, tx: "InstructionTranslator", x):
unimplemented(f"copy.deepcopy {repr(x)}")
def _comparison_with_tensor(self, tx: "InstructionTranslator", left, right):
from .builder import wrap_fx_proxy_cls
from .tensor import supported_tensor_comparison_op_values
op = self.fn
if op in [operator.is_, operator.is_not]:
is_result = (
isinstance(left, TensorVariable)
and isinstance(right, TensorVariable)
and id(extract_fake_example_value(left.as_proxy().node))
== id(extract_fake_example_value(right.as_proxy().node))
)
if op is operator.is_:
return ConstantVariable.create(is_result)
else:
return ConstantVariable.create(not is_result)
if op not in supported_tensor_comparison_op_values:
unimplemented(f"{op.__name__}({left}, {right})")
if (
isinstance(left, TensorVariable)
and isinstance(right, TensorVariable)
and (left.size and right.size) is not None
and left.size != right.size
):
try:
torch.broadcast_shapes(left.size, right.size)
except RuntimeError:
# not broadcastable, can't be compared
unimplemented(f"{op.__name__}({left}, {right})")
tensor_cls = left if isinstance(left, TensorVariable) else right
proxy = tx.output.create_proxy(
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
)
return wrap_fx_proxy_cls(
type(tensor_cls), # handle Ndarrays and Tensors
tx,
proxy,
)
def _comparison_with_symnode(self, tx: "InstructionTranslator", left, right):
from .tensor import supported_tensor_comparison_op_values
op = self.fn
if op not in supported_tensor_comparison_op_values:
unimplemented(f"{op.__name__}({left}, {right})")
proxy = tx.output.create_proxy(
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
)
return SymNodeVariable.create(
tx,
proxy,
sym_num=None,
)
def call_and_(self, tx: "InstructionTranslator", a, b):
# Rely on constant_handler
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
return None
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
b, (SymNodeVariable, ConstantVariable)
):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.and_, *proxy_args_kwargs([a, b], {})
),
sym_num=None,
)
if hasattr(a, "set_items") and hasattr(b, "set_items"):
return SetVariable(list(a.set_items & b.set_items))
# None no-ops this handler and lets the driving function proceed
call_iand = call_and_
def call_or_(self, tx: "InstructionTranslator", a, b):
# Rely on constant_handler
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
return None
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
b, (SymNodeVariable, ConstantVariable)
):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.or_, *proxy_args_kwargs([a, b], {})
),
sym_num=None,
)
if hasattr(a, "set_items") and hasattr(b, "set_items"):
return SetVariable(list(a.set_items | b.set_items))
# None no-ops this handler and lets the driving function proceed
return None
call_ior = call_or_
def call_not_(self, tx: "InstructionTranslator", a):
if isinstance(a, SymNodeVariable):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.not_, *proxy_args_kwargs([a], {})
),
sym_num=None,
)
# Unwrap the underlying ConstDictVariable
if isinstance(a, DictViewVariable):
a = a.dv_dict
if isinstance(a, (ListVariable, ConstDictVariable)):
return ConstantVariable.create(len(a.items) == 0)
return None
def call_contains(
self, tx: "InstructionTranslator", a: VariableTracker, b: VariableTracker
):
return a.call_method(tx, "__contains__", [b], {})
@contextlib.contextmanager
def dynamo_disable_grad(tx):
from . import GradModeVariable
gmv = GradModeVariable.create(tx, False)
try:
gmv.enter(tx)
yield
finally:
gmv.exit(tx)