mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
These files don't follow the usual pattern: In general the files torch/csrc/X torch/csrc/cuda/X both include the generic file torch/csrc/generic/X, where torch/csrc/X includes the cpu implementations and torch/csrc/cuda/X includes the cuda implementations. (Aside: this is probably not the best structure, the torch/csrc/X fiels should probably be moved to torch/csrc/cpu/X). utils.cpp combines these so that torch/csrc/utils.cpp has cuda specific code. This makes it impossible to declare a single THTensor and THCTensor template type (i.e. THPPointer<_THTensor>, THPointer<_THCTensor>).
230 lines
6.2 KiB
C++
230 lines
6.2 KiB
C++
#include "torch/csrc/python_headers.h"
|
|
#include <stdarg.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
#include "THP.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
#include "torch/csrc/utils/invalid_arguments.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
|
|
#include "generic/utils.cpp"
|
|
#include <TH/THGenerateAllTypes.h>
|
|
|
|
#include "generic/utils.cpp"
|
|
#include <TH/THGenerateHalfType.h>
|
|
|
|
int THPUtils_getCallable(PyObject *arg, PyObject **result) {
|
|
if (!PyCallable_Check(arg))
|
|
return 0;
|
|
*result = arg;
|
|
return 1;
|
|
}
|
|
|
|
THLongStoragePtr THPUtils_unpackSize(PyObject *arg) {
|
|
THLongStoragePtr result;
|
|
if (!THPUtils_tryUnpackLongs(arg, result)) {
|
|
std::string msg = "THPUtils_unpackSize() expects a torch.Size (got '";
|
|
msg += Py_TYPE(arg)->tp_name;
|
|
msg += "')";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool THPUtils_tryUnpackLongs(PyObject *arg, THLongStoragePtr& result) {
|
|
bool tuple = PyTuple_Check(arg);
|
|
bool list = PyList_Check(arg);
|
|
if (tuple || list) {
|
|
int nDim = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
THLongStoragePtr storage(THLongStorage_newWithSize(nDim));
|
|
for (int i = 0; i != nDim; ++i) {
|
|
PyObject* item = tuple ? PyTuple_GET_ITEM(arg, i) : PyList_GET_ITEM(arg, i);
|
|
if (!THPUtils_checkLong(item)) {
|
|
return false;
|
|
}
|
|
THLongStorage_set(storage, i, THPUtils_unpackLong(item));
|
|
}
|
|
result = std::move(storage);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::vector<int64_t> THPUtils_unpackLongs(PyObject *arg) {
|
|
bool tuple = PyTuple_Check(arg);
|
|
bool list = PyList_Check(arg);
|
|
if (tuple || list) {
|
|
int nDim = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<int64_t> sizes(nDim);
|
|
for (int i = 0; i != nDim; ++i) {
|
|
PyObject* item = tuple ? PyTuple_GET_ITEM(arg, i) : PyList_GET_ITEM(arg, i);
|
|
if (!THPUtils_checkLong(item)) {
|
|
std::ostringstream oss;
|
|
oss << "expected int at position " << i << ", but got: " << THPUtils_typename(item);
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
sizes[i] = THPUtils_unpackLong(item);
|
|
}
|
|
return sizes;
|
|
}
|
|
throw std::runtime_error("Expected tuple or list");
|
|
}
|
|
|
|
bool THPUtils_tryUnpackLongVarArgs(PyObject *args, int ignore_first, THLongStoragePtr& result) {
|
|
Py_ssize_t length = PyTuple_Size(args) - ignore_first;
|
|
if (length < 1) {
|
|
return false;
|
|
}
|
|
|
|
PyObject *first_arg = PyTuple_GET_ITEM(args, ignore_first);
|
|
if (length == 1 && THPUtils_tryUnpackLongs(first_arg, result)) {
|
|
return true;
|
|
}
|
|
|
|
// Try to parse the numbers
|
|
result = THLongStorage_newWithSize(length);
|
|
for (Py_ssize_t i = 0; i < length; ++i) {
|
|
PyObject *arg = PyTuple_GET_ITEM(args, i + ignore_first);
|
|
if (!THPUtils_checkLong(arg)) {
|
|
return false;
|
|
}
|
|
THLongStorage_set(result, i, THPUtils_unpackLong(arg));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool THPUtils_checkIntTuple(PyObject *arg)
|
|
{
|
|
if (!PyTuple_Check(arg)) {
|
|
return false;
|
|
}
|
|
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(arg); ++i) {
|
|
if (!THPUtils_checkLong(PyTuple_GET_ITEM(arg, i))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::vector<int> THPUtils_unpackIntTuple(PyObject *arg)
|
|
{
|
|
if (!THPUtils_checkIntTuple(arg)) {
|
|
throw std::runtime_error("Couldn't unpack int tuple");
|
|
}
|
|
std::vector<int> values(PyTuple_GET_SIZE(arg));
|
|
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(arg); ++i) {
|
|
values[i] = (int)THPUtils_unpackLong(PyTuple_GET_ITEM(arg, i));
|
|
}
|
|
return values;
|
|
}
|
|
|
|
void THPUtils_setError(const char *format, ...)
|
|
{
|
|
static const size_t ERROR_BUFFER_SIZE = 1000;
|
|
char buffer[ERROR_BUFFER_SIZE];
|
|
va_list fmt_args;
|
|
|
|
va_start(fmt_args, format);
|
|
vsnprintf(buffer, ERROR_BUFFER_SIZE, format, fmt_args);
|
|
va_end(fmt_args);
|
|
PyErr_SetString(PyExc_RuntimeError, buffer);
|
|
}
|
|
|
|
void THPUtils_addPyMethodDefs(std::vector<PyMethodDef>& vector, PyMethodDef* methods)
|
|
{
|
|
if (!vector.empty()) {
|
|
// remove NULL terminator
|
|
vector.pop_back();
|
|
}
|
|
while (1) {
|
|
vector.push_back(*methods);
|
|
if (!methods->ml_name) {
|
|
break;
|
|
}
|
|
methods++;
|
|
}
|
|
}
|
|
|
|
static const char* classOrTypename(PyObject* obj) {
|
|
if (PyType_Check(obj)) {
|
|
return ((PyTypeObject*)obj)->tp_name;
|
|
}
|
|
return Py_TYPE(obj)->tp_name;
|
|
}
|
|
|
|
PyObject * THPUtils_dispatchStateless(
|
|
PyObject *tensor, const char *name, PyObject *args, PyObject *kwargs)
|
|
{
|
|
THPObjectPtr methods(PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME));
|
|
if (!methods) {
|
|
return PyErr_Format(
|
|
PyExc_TypeError,
|
|
"Type %s doesn't implement stateless methods",
|
|
classOrTypename(tensor));
|
|
}
|
|
THPObjectPtr method(PyObject_GetAttrString(methods, name));
|
|
if (!method) {
|
|
return PyErr_Format(
|
|
PyExc_TypeError,
|
|
"Type %s doesn't implement stateless method %s",
|
|
classOrTypename(tensor),
|
|
name);
|
|
}
|
|
return PyObject_Call(method.get(), args, kwargs);
|
|
}
|
|
|
|
void THPUtils_invalidArguments(PyObject *given_args, PyObject *given_kwargs,
|
|
const char *function_name, size_t num_options, ...) {
|
|
std::vector<std::string> option_strings;
|
|
va_list option_list;
|
|
va_start(option_list, num_options);
|
|
for (size_t i = 0; i < num_options; i++)
|
|
option_strings.push_back(va_arg(option_list, const char*));
|
|
va_end(option_list);
|
|
|
|
PyErr_SetString(PyExc_TypeError, torch::format_invalid_args(
|
|
given_args, given_kwargs, function_name, option_strings).c_str());
|
|
}
|
|
|
|
template<>
|
|
void THPPointer<THPGenerator>::free() {
|
|
if (ptr)
|
|
Py_DECREF(ptr);
|
|
}
|
|
|
|
template class THPPointer<THPGenerator>;
|
|
|
|
static bool backCompatBroadcastWarn = false;
|
|
|
|
void setBackCompatBroadcastWarn(bool warn) {
|
|
backCompatBroadcastWarn = warn;
|
|
}
|
|
|
|
bool getBackCompatBroadcastWarn() {
|
|
return backCompatBroadcastWarn;
|
|
}
|
|
|
|
static bool backCompatKeepdimWarn = false;
|
|
|
|
void setBackCompatKeepdimWarn(bool warn) {
|
|
backCompatKeepdimWarn = warn;
|
|
}
|
|
|
|
bool getBackCompatKeepdimWarn() {
|
|
return backCompatKeepdimWarn;
|
|
}
|
|
|
|
bool maybeThrowBackCompatKeepdimWarn(char *func) {
|
|
if(getBackCompatKeepdimWarn()) {
|
|
std::ostringstream ss;
|
|
ss << "backwards compatibility: call to \"" << func
|
|
<< "\" uses default value for keepdim which has changed default to False. Consider passing as kwarg.",
|
|
PyErr_WarnEx(PyExc_UserWarning, ss.str().c_str(), 1);
|
|
}
|
|
return true;
|
|
}
|