Files
pytorch/torch/csrc/jit/runtime/static/impl.cpp
Scott Wolchok 10e9d80ad1 [PyTorch][Static Runtime] Don't track scalar ivalues (#67702)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67702

This isn't a particularly large optimization and it does
nothing before select_tensor is introduced (I'm surprised that no
operators have optimizable outputs!), but it seems like we should probably get the savings.
ghstack-source-id: 143424918

Test Plan: CI; checked `--do_profile=1` ouput with following diff and we save tracking hundreds of values, as expected.

Reviewed By: hlu1

Differential Revision: D32112522

fbshipit-source-id: 1804b77992a73670bfc1e36af608b852b8261bd2
2021-11-16 11:05:42 -08:00

1886 lines
63 KiB
C++

#include <torch/csrc/jit/runtime/static/impl.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/core/interned_strings.h>
#include <ATen/record_function.h>
#include <c10/core/CPUAllocator.h>
#include <c10/core/InferenceMode.h>
#include <c10/util/irange.h>
#include <caffe2/core/scope_guard.h>
#include <caffe2/core/timer.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/eliminate_no_ops.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/variadic_ops.h>
#include <torch/csrc/jit/runtime/static/memory_planner.h>
#include <torch/csrc/jit/runtime/static/ops.h>
#include <torch/csrc/jit/runtime/static/passes.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <iterator>
#include <sstream>
#include <stdexcept>
#ifdef FBCODE_CAFFE2
#include <folly/dynamic.h>
#include <folly/json.h>
#endif
namespace torch {
namespace jit {
// A manually curated set of ops that are disallowed in static runtime.
// These are rarely-used ops. Disallowing them typically eliminates
// corner cases in graph optimizations, allowing for more aggressive
// optimizations and better performance.
bool isUnsupportedOp(const NodeKind& kind) {
return kind == aten::__is__ || kind == aten::__isnot__;
}
// graph must be frozen or canEnableStaticRuntime would return false if there's
// any prim::CallMethod op left in the graph
bool canEnableStaticRuntime(const std::shared_ptr<torch::jit::Graph>& graph) {
// check for sub-blocks
bool can_support = true;
bool has_blocks = false;
for (auto* node : graph->block()->nodes()) {
if (node->blocks().size() > 0) {
has_blocks = true;
VLOG(1) << "Found nested sub-blocks in graph at node: "
<< PrintNode(node);
}
const auto kind = node->kind();
if (kind == prim::Constant) {
continue;
}
// check if can get op from Node
const Operator* op = node->maybeOperator();
if (isUnsupportedOp(kind) || (!op && !nativeOpIsRegistered(kind))) {
can_support = false;
LOG(WARNING) << "Found unsupported op: " << kind.toQualString();
}
}
if (has_blocks) {
LOG(WARNING)
<< "Found nested sub-block in graph. Static Runtime doesn't support nested sub-blocks.";
can_support = false;
}
return can_support;
}
std::string dumpValueSet(
const FastSet<const Value*>& value_set,
const char* set_name) {
std::ostringstream oss;
oss << set_name << ": {";
for (const auto* val : value_set) {
oss << "%" << val->debugName() << ", ";
}
oss << "}";
return oss.str();
}
namespace {
void OptimizeGraph(
std::shared_ptr<torch::jit::Graph>& graph,
const StaticModuleOptions& opts) {
GRAPH_DUMP("Before optimizations: ", graph);
Inline(*graph);
ConstantPropagation(graph);
Canonicalize(graph);
ConstantPropagation(graph);
RemoveTensorMutation(graph);
ConstantPropagation(graph);
EliminateDeadCode(graph);
FuseInferenceOpsForSparseNN(graph);
UseVariadicCat(graph);
UseVariadicStack(graph);
EliminateTrivialEquallySplit(graph);
if (opts.enable_out_variant) {
UseVariadicOp(
graph,
fromQualString("fb::sigrid_transforms_torch_bind"),
fromQualString("fb::variadic_sigrid_transforms_torch_bind"));
FuseSignLog1P(graph);
// TODO: we can avoid this guard by moving operations
// to exposed folders.
#ifdef FBCODE_CAFFE2
ReplaceWithCopy(graph);
FuseListUnpack(graph);
EnableStaticRuntimeLayerNorm(graph);
#endif
}
ConstantPropagation(graph);
RemoveImmutableInputDictLookups(graph);
UseVariadicTupleUnpack(graph);
UseVariadicGroupedAccessor(graph);
EliminateNoOps(
graph, /* custom_ops */ {fromQualString("fb::scale_gradient")});
GRAPH_DUMP("Final graph after optimizations: ", graph);
}
// remove unused input 0 from graph
bool RemoveSelfFromGraphInput(std::shared_ptr<torch::jit::Graph>& graph) {
if (graph->inputs().at(0)->type()->is_module()) {
if (graph->inputs().at(0)->hasUses()) {
return false;
}
graph->eraseInput(0);
}
return true;
}
// remove "self" from function schema
c10::FunctionSchema RemoveSelfFromSchema(const c10::FunctionSchema& s) {
TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self");
std::vector<Argument> args({s.arguments().begin() + 1, s.arguments().end()});
return s.cloneWithArguments(args);
}
std::vector<Value*> valueVecFromFastSet(const FastSet<const Value*>& s) {
std::vector<Value*> result;
result.reserve(s.size());
for (auto* v : s) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
result.emplace_back(const_cast<Value*>(v));
}
return result;
}
bool mayContainAlias(AliasDb& db, const Value* a, const Value* b) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
return db.mayContainAlias(const_cast<Value*>(a), const_cast<Value*>(b));
}
bool mayContainAlias(
AliasDb& db,
const FastSet<const Value*>& a,
const FastSet<const Value*>& b) {
return db.mayContainAlias(valueVecFromFastSet(a), valueVecFromFastSet(b));
}
// Map each value to all values that are alive at the same time.
using LivenessMap = FastMap<const Value*, FastSet<const Value*>>;
std::string dumpLivenessMap(const LivenessMap& liveness_map) {
std::ostringstream oss;
oss << "{";
for (const auto& p : liveness_map) {
oss << "{%" << p.first->debugName() << ": {";
for (const auto* val : p.second) {
oss << "%" << val->debugName() << ", ";
}
oss << "}},\n";
}
oss << "}";
return oss.str();
}
// The algorithm does a traversal of the execution graph
// while keeping track of the live values.
LivenessMap GetLivenessMap(
const std::shared_ptr<torch::jit::Graph>& graph,
const ValueGroup& value_group,
AliasDb& db) {
// map a Value to a set of Values that overlap live-ranges with the Value's
FastMap<const Value*, FastSet<const Value*>> liveness_map;
// map Values to its creation order in graph (Note: only traverse top-level
// nodes such that nodes under control-flows are represented by top-level
// block nodes)
std::vector<const Value*> values_in_creation_order;
FastMap<const Value*, size_t> values_to_idx_in_creation_order;
for (const auto* node : graph->nodes()) {
values_to_idx_in_creation_order.reserve(
values_to_idx_in_creation_order.size() + node->outputs().size());
for (const auto* v : node->outputs()) {
values_to_idx_in_creation_order.emplace(
v, values_in_creation_order.size());
values_in_creation_order.emplace_back(v);
}
}
// presence of a Value in live_values_use_chain means the Value alive
// Value mapped to set of Nodes that may use the Value (i.e., use-chain of
// Value)
FastMap<const Value*, FastSet<const Node*>> live_values_use_chain;
// Node mapped to set of Values that the Node may use (i.e., def-chain of node
// inputs)
FastMap<const Node*, FastSet<const Value*>> live_nodes_def_chain;
// add v to the current liveness_map
std::function<void(const Value* v)> add_live_value_fn = [&](const Value* v) {
if (liveness_map.count(v)) {
return;
}
auto& v_live_set = liveness_map[v] = {};
v_live_set.reserve(live_values_use_chain.size());
for (const auto& live_v : live_values_use_chain) {
v_live_set.insert(live_v.first);
liveness_map[live_v.first].insert(v);
}
// only add values to the live set if they
// have deps, otherwise they die immediately
if (v->uses().size()) {
live_values_use_chain[v] = FastSet<const Node*>(v->uses().size());
// record the relationship between v (Value) and its uses (Node)
for (const auto& u : v->uses()) {
const auto* node = u.user;
live_values_use_chain[v].insert(node);
live_nodes_def_chain[node].insert(v);
}
}
// FIXME(penguin): the following alias refinement seems to assume
// that `v` refers to a new tensor created by the node that defines
// v, thus other Values "before" the node that defines `v` cannot
// possibly be aliased to `v`.
// TODO(penguin): Is it a limitation of TS alias analysis
// so that we need to do such refinement? If so, better improve
// alias analysis so that we dont need this special handling here
//
// Refine aliases of v by include only those created after v
std::vector<const Value*> refined_aliases;
auto idx = values_to_idx_in_creation_order[v];
for (; idx < values_in_creation_order.size(); ++idx) {
auto* alias_v = values_in_creation_order[idx];
if (mayContainAlias(db, v, alias_v)) {
refined_aliases.emplace_back(alias_v);
}
}
// for all the values in the alias set,
// we set them "alive"
for (auto* aliased_v : refined_aliases) {
GRAPH_DEBUG("aliased_v: %", aliased_v->debugName());
add_live_value_fn(aliased_v);
}
};
auto remove_dead_values = [&](const Node* node) {
auto find = live_nodes_def_chain.find(node);
if (find != live_nodes_def_chain.end()) {
for (const auto* v : find->second) {
live_values_use_chain[v].erase(node);
if (!live_values_use_chain[v].size()) {
// v is now dead
live_values_use_chain.erase(v);
}
}
}
};
for (const auto* node : graph->nodes()) {
for (const auto* v : node->outputs()) {
if (!value_group.isAlwaysAlive(v)) {
add_live_value_fn(v);
}
}
remove_dead_values(node);
}
GRAPH_DEBUG("LivenessMap: ", dumpLivenessMap(liveness_map));
for (const auto& v : live_values_use_chain) {
TORCH_CHECK(
value_group.isAlwaysAlive(v.first),
v.first->debugName(),
"is not in the value_group.isAlwaysAlive group");
}
auto insert_all_pairs_in_liveness_map =
[&](at::ArrayRef<const Value*> values) {
for (size_t i = 0; !values.empty() && i < values.size() - 1; ++i) {
auto value_it = liveness_map.find(values[i]);
if (value_it == liveness_map.end()) {
continue;
}
for (size_t j = i + 1; j < values.size(); ++j) {
auto value2_it = liveness_map.find(values[j]);
if (value2_it != liveness_map.end()) {
value_it->second.insert(values[j]);
value2_it->second.insert(values[i]);
}
}
}
};
for (const auto* node : graph->nodes()) {
auto inputs = node->inputs();
auto outputs = node->outputs();
for (const auto* input : inputs) {
for (const auto* output : outputs) {
auto input_it = liveness_map.find(input);
if (input_it == liveness_map.end()) {
continue;
}
auto output_it = liveness_map.find(output);
if (output_it == liveness_map.end()) {
continue;
}
input_it->second.insert(output);
output_it->second.insert(input);
}
}
// All inputs should be alive at the same time.
insert_all_pairs_in_liveness_map(inputs);
// All outputs should be alive at the same time.
insert_all_pairs_in_liveness_map(outputs);
};
return liveness_map;
};
// Collect the set of Values that are candidates for memory planning:
// - Values that are used in in-place operators (i.e., _out variants), and
// - excluding those that are either inputs or outputs of
// non in-place operators
//
// Returns
// first: Values that are candidates for memory planning
// second: A deterministc order of all values
std::pair<std::vector<const Value*>, std::vector<const Value*>>
GetMemoryPlanningCandidates(
const std::shared_ptr<torch::jit::Graph>& graph,
const FastMap<Node*, bool>& node_has_out_variant) {
// for determinism
FastSet<const Value*> seen_values;
std::vector<const Value*> all_values;
FastSet<const Value*> can_reuse;
// values used by unsupported ops (as either inputs or outputs)
// these need to be removed from "can_reuse" after analyzing all nodes
FastSet<const Value*> cannot_reuse;
for (auto* n : graph->nodes()) {
bool can_reuse_inputs_outputs =
canReuseInputsOutputs(n, node_has_out_variant);
for (const auto* v : n->inputs()) {
if (!seen_values.count(v)) {
all_values.emplace_back(v);
seen_values.insert(v);
}
if (can_reuse_inputs_outputs) {
can_reuse.insert(v);
} else {
cannot_reuse.insert(v);
}
}
for (const auto* v : n->outputs()) {
all_values.emplace_back(v);
seen_values.insert(v);
if (can_reuse_inputs_outputs) {
can_reuse.insert(v);
} else {
cannot_reuse.insert(v);
}
}
}
for (const auto* v : cannot_reuse) {
can_reuse.erase(v);
}
// find a deterministic order
std::vector<const Value*> optimizable;
for (const auto* v : all_values) {
if (can_reuse.count(v)) {
optimizable.emplace_back(v);
can_reuse.erase(v);
}
}
return std::make_pair(optimizable, all_values);
}
// Equipped with a liveness map we can allocate memory to
// ivalues, reusing memory along the way. However, we are
// constrained by the set of optimizable_values
// (inputs/outputs of out variants). Inputs/outputs of view ops
// can't be reused.
//
// Algorithm:
// # clusters of values sharing the same memory
// # are called "value_to_same_storage_values" in the implementation
// # inserting into a cluster denotes sharing memory.
//
// clusters = {}
// for all v in optimzable_values:
// for all cluster in clusters: # can we insert into cluster?
// for all live_v in live_during(v):
// if cluster.contains(live_v):
// skip to next custer
// cluster.add(v)
// skip to next v
// if no cluster found:
// clusters.add(cluster{v})
//
//
// NB: This is a deterministic implementation, which makes it easier to tune
// and debug.
FastMap<const Value*, std::vector<const Value*>> GenerateSameStorageValues(
const LivenessMap& alive_during,
const ValueGroup& value_group,
const std::pair<std::vector<const Value*>, std::vector<const Value*>>&
optimizable,
AliasDb& db) {
const auto& optimizable_values = optimizable.first;
const auto& all_values = optimizable.second;
// map Value* to a set Value* that can share the same storage with it
FastMap<const Value*, std::vector<const Value*>> same_storage_values;
// make new_v and old_v map to the same storage (i.e., add to each other's
// same_storage_values set)
auto share_storage_fn = [&](const Value* new_v, const Value* old_v) {
if (new_v == old_v) {
return;
}
DCHECK(same_storage_values.count(old_v));
FastSet<const Value*> seen;
std::vector<const Value*> values;
for (auto* v : same_storage_values.at(old_v)) {
if (seen.count(v)) {
continue;
}
seen.insert(v);
values.emplace_back(v);
}
for (auto* v : same_storage_values.at(new_v)) {
if (seen.count(v)) {
continue;
}
seen.insert(v);
values.emplace_back(v);
}
for (const auto* v : values) {
same_storage_values[v] = values;
}
};
// initialize with known same_storage_values (aliasing values)
for (const auto* v : all_values) {
if (!same_storage_values.count(v)) {
same_storage_values[v] = {v};
}
// skip always alive values (alias inputs/outputs/weights)
if (value_group.isAlwaysAlive(v)) {
continue;
}
for (const auto& p : same_storage_values) {
// NB: this means we cannot optimize operations that "sometimes alias"
// TODO: add a more robust check of this behavior at runtime
// FIXME (penguin): this handling makes v and MayAlias(v) share the
// same storage, which is not correct.
if (db.mayAlias(p.first, v)) {
share_storage_fn(v, p.first);
}
}
}
// to preserve determinism
std::vector<const Value*> seen;
auto compute_liveset_fn = [&alive_during, &same_storage_values](
FastSet<const Value*>& live, const Value* v) {
for (const auto* sv : same_storage_values.at(v)) {
const auto& l = alive_during.count(sv) ? alive_during.at(sv)
: FastSet<const Value*>{};
live.insert(l.begin(), l.end());
}
};
// check if same_storage_values[s] intersects with live
auto intersect_fn = [&same_storage_values](
FastSet<const Value*>& live, const Value* s) {
bool intersect = false;
for (const auto* v : same_storage_values.at(s)) {
if (live.count(v)) {
intersect = true;
break;
}
}
return intersect;
};
for (const auto* v : optimizable_values) {
if (value_group.isAlwaysAlive(v)) {
continue;
}
// get values that are live during the lifetime of v
FastSet<const Value*> live;
compute_liveset_fn(live, v);
for (const auto* s : seen) {
// if live(same_storage_values[v]) and same_storage_values[s]
// do not overlap, then s and v can share the same storage
if (!intersect_fn(live, s) && !value_group.isAlwaysAlive(s)) {
share_storage_fn(v, s);
// since s is added to same_storage_values[v], live needs
// to be recomputed, so bail out here
break;
}
}
seen.emplace_back(v);
}
return same_storage_values;
}
void PrepareGraphForStaticModule(
std::shared_ptr<torch::jit::Graph> graph,
const StaticModuleOptions& opts) {
TORCH_CHECK(canEnableStaticRuntime(graph));
OptimizeGraph(graph, opts);
}
std::pair<std::shared_ptr<Graph>, c10::optional<Module>> PrepareForStaticModule(
const torch::jit::Module& m,
bool is_frozen,
const StaticModuleOptions& opts) {
VLOG(1) << "StaticModuleOptions: cleanup_activations "
<< opts.cleanup_activations << ", enable_out_variant "
<< opts.enable_out_variant << ", optimize_memory "
<< opts.optimize_memory << ", manage_output_tensors "
<< opts.manage_output_tensors;
Module module = m.copy();
if (!is_frozen) {
module.eval();
module = freeze_module(module);
}
Method method = module.get_method("forward");
auto graph = module.get_method("forward").graph();
PrepareGraphForStaticModule(graph, opts);
return std::make_pair(graph, module);
}
std::pair<std::shared_ptr<Graph>, c10::optional<Module>> PrepareForStaticModule(
std::shared_ptr<torch::jit::Graph> graph,
const StaticModuleOptions& opts) {
PrepareGraphForStaticModule(graph, opts);
return std::make_pair(graph, c10::nullopt);
}
} // namespace
void ValueGroup::init(
const std::shared_ptr<torch::jit::Graph>& graph,
AliasDb& db) {
external_aliases_.clear();
output_aliases_.clear();
// Build `input_or_constant_aliases` as we look through nodes forwardly from
// the graph's inputs and add aliases of the inputs being created by the
// nodes.
external_aliases_.insert(graph->inputs().begin(), graph->inputs().end());
for (const auto* node : graph->nodes()) {
if (node->kind() == prim::Constant) {
for (const auto* output : node->outputs()) {
external_aliases_.insert(output);
}
}
}
for (const auto* node : graph->nodes()) {
if (node->kind() == prim::Constant) {
// Constants are already in `input_or_constant_aliases`.
continue;
}
for (const auto* v : node->outputs()) {
if (mayContainAlias(db, {v}, external_aliases_)) {
external_aliases_.insert(v);
}
}
}
// Build `output_aliases` as we look through nodes reversely so that we can
// start from the output values, and follow the flows backwardly from there.
output_aliases_.insert(graph->outputs().begin(), graph->outputs().end());
for (const auto* node : graph->nodes().reverse()) {
if (node->kind() == prim::Constant) {
// Constants cannot create any aliases.
continue;
}
for (const auto* v : node->outputs()) {
// Add values that can aliase input/constant values. Note some output
// aliases may end up in this category via collection objects (e.g.,
// Tuple).
if (mayContainAlias(db, {v}, external_aliases_)) {
external_aliases_.insert(v);
continue;
}
if (mayContainAlias(db, {v}, output_aliases_)) {
output_aliases_.insert(v);
}
}
}
}
bool containTensorsOnly(at::ArrayRef<Value*> values) {
// return true only if all outputs are tensors
return std::all_of(values.begin(), values.end(), [](const Value* value) {
return value->type()->castRaw<TensorType>() != nullptr;
});
}
StaticModule::StaticModule(
std::shared_ptr<torch::jit::Graph> g,
const StaticModuleOptions& opts)
: StaticModule(PrepareForStaticModule(g->copy(), opts), opts) {}
StaticModule::StaticModule(
const torch::jit::Module& m,
bool is_frozen,
const StaticModuleOptions& opts)
: StaticModule(PrepareForStaticModule(m, is_frozen, opts), opts) {}
StaticModule::StaticModule(
std::pair<std::shared_ptr<torch::jit::Graph>, c10::optional<Module>>
graph_and_module,
const StaticModuleOptions& opts)
: opts_(opts),
graph_(std::move(graph_and_module.first)),
module_(std::move(graph_and_module.second)) {
// check opt flags
if (opts.manage_output_tensors) {
TORCH_CHECK(
opts_.enable_out_variant,
"When manage_output_tensors is true, enable_out_variant must be set to true");
}
if (opts_.optimize_memory) {
TORCH_CHECK(
opts_.enable_out_variant,
"When optimize_memory is true, enable_out_variant must be set to true");
}
// handle schema
if (module_.has_value()) {
Method method = module_->get_method("forward");
if (RemoveSelfFromGraphInput(graph_)) {
schema_ = RemoveSelfFromSchema(method.function().getSchema());
module_ = c10::nullopt;
} else {
schema_ = method.function().getSchema();
}
}
// map Value* to its SSA definition IR
FastMap<Value*, DefInfo> value_to_ssa_def;
// N inputs map to the first N entries in storage
for (const auto i : c10::irange(graph_->inputs().size())) {
Value* input = graph_->inputs()[i];
value_to_ssa_def[input] = std::make_pair(INPUT_VALUE, i);
}
// NB: before optimizing the order of execution, ensure that the
// memory optimization pass (LivenessMap) is
// aware of the new order!
// Fill constants first, so we have a std::vector<IValue> we can reference
// later
for (Node* node : graph_->nodes()) {
if (node->kind() != prim::Constant) {
continue;
}
auto* v = node->output();
TORCH_CHECK(v->type()->kind() != FunctionType::Kind);
constants_.emplace_back(toIValue(v).value());
}
{
// construct SSA definition for constant nodes
int i = 0;
for (Node* node : graph_->nodes()) {
if (node->kind() != prim::Constant) {
continue;
}
auto* v = node->output();
value_to_ssa_def[v] = std::make_pair(CONSTANT_VALUE, i++);
}
}
AliasDb alias_db(
graph_, /*isFrozen=*/false, /*enablePreciseTupleContainerAnalysis=*/true);
// construct SSA definition for non-constant nodes
int node_idx = 0;
FastMap<Node*, bool> node_has_out_variant;
const auto inputs_index_offset = 0;
const auto constants_index_offset = inputs_index_offset + num_inputs();
const auto values_index_offset = constants_index_offset + constants().size();
// Map node_idx to index offset in values_. Can't reserve space
// because we don't know how many non-constant nodes there are yet.
std::vector<uint32_t> node_output_idx_map;
uint32_t node_outputs_seen_so_far = 0;
for (Node* node : graph_->nodes()) {
if (node->kind() == prim::Constant) {
continue;
}
// Assign memory for the outputs
const auto outputs_offset_for_node =
node_outputs_seen_so_far + values_index_offset;
TORCH_CHECK(
outputs_offset_for_node < (1 << 16),
"outputs offset in values table",
outputs_offset_for_node,
" would overflow 2-byte index storage");
node_output_idx_map.push_back(outputs_offset_for_node);
node_outputs_seen_so_far += node->outputs().size();
}
for (Node* node : graph_->nodes()) {
if (node->kind() == prim::Constant) {
continue;
}
ProcessedNodeInputs input_indices(node->inputs().size());
std::vector<DefInfo> input_ssa_defs;
for (const auto input_idx : c10::irange(node->inputs().size())) {
Value* const input = node->inputs()[input_idx];
int inner_node_idx = 0;
int out_idx = 0;
std::tie(inner_node_idx, out_idx) = value_to_ssa_def.at(input);
unsigned int input_ivalue_idx = 0;
if (inner_node_idx == StaticModule::INPUT_VALUE) {
input_ivalue_idx = out_idx + inputs_index_offset;
} else if (inner_node_idx == StaticModule::CONSTANT_VALUE) {
input_ivalue_idx = out_idx + constants_index_offset;
} else {
DCHECK_GE(inner_node_idx, 0);
const auto global_value_idx =
node_output_idx_map[inner_node_idx] + out_idx;
if (inner_node_idx < node_output_idx_map.size() - 1) {
DCHECK_LT(global_value_idx, node_output_idx_map[inner_node_idx + 1]);
} else {
DCHECK_LT(
global_value_idx,
constants_index_offset + node_outputs_seen_so_far);
}
input_ivalue_idx = global_value_idx;
}
TORCH_CHECK(
input_ivalue_idx < (1 << 16),
"input index in values table ",
input_ivalue_idx,
" would overflow 2-byte index storage");
input_indices[input_idx] = input_ivalue_idx;
}
// create a new ProcessedNode
// see [Check and correct bad schema alias info at runtime]
bool check_outputs_for_overlap =
!alias_db.mayContainAlias(node->inputs(), node->outputs()) &&
containTensorsOnly(node->outputs());
nodes_.emplace_back(
node,
std::move(input_indices),
node_output_idx_map[node_idx],
opts.enable_out_variant,
check_outputs_for_overlap);
node_has_out_variant.emplace(node, nodes_.back().has_out_variant());
for (const auto i : c10::irange(node->outputs().size())) {
value_to_ssa_def[node->outputs()[i]] = std::make_pair(node_idx, i);
}
node_idx++;
}
for (auto& pnode : nodes_) {
if (pnode.num_outputs() == 1 &&
isOptimizableContainerType(pnode.node(), node_has_out_variant)) {
node_is_optimizable_container_type_.emplace(pnode.node());
}
}
output_indices_.reserve(graph_->outputs().size());
for (auto output : graph_->outputs()) {
int node_idx = 0;
int out_idx = 0;
std::tie(node_idx, out_idx) = value_to_ssa_def[output];
uint32_t output_index = 0;
if (node_idx == StaticModule::INPUT_VALUE) {
output_index = out_idx + inputs_index_offset;
} else if (node_idx == StaticModule::CONSTANT_VALUE) {
output_index = constants_index_offset + out_idx;
} else {
output_index = nodes_[node_idx].output_ivalue_index(out_idx);
}
TORCH_CHECK(
output_index < (1 << 16),
"output index ",
output_index,
" would overflow 2-byte index storage");
output_indices_.emplace_back(output_index);
}
// Prepare for memory planning
value_group_.init(graph_, alias_db);
GRAPH_DEBUG(value_group_.toString());
if (opts_.optimize_memory) {
auto lm = GetLivenessMap(graph_, value_group_, alias_db);
auto values = GetMemoryPlanningCandidates(graph_, node_has_out_variant);
value_to_same_storage_values_ =
GenerateSameStorageValues(lm, value_group_, values, alias_db);
}
}
const StaticModuleOptions& StaticModule::opts() const {
return opts_;
}
size_t StaticModule::num_outputs() const {
return graph_->outputs().size();
}
size_t StaticModule::num_inputs() const {
return graph_->inputs().size();
}
StaticRuntime& StaticModule::runtime() {
if (!cached_runtime_) {
cached_runtime_ = std::make_unique<StaticRuntime>(*this);
}
return *cached_runtime_;
}
Node* StaticModule::findNodeWithKindForTesting(const std::string& kind) const {
for (auto& pnode : nodes()) {
if (pnode.node()->kind().toQualString() == kind) {
return pnode.node();
}
}
return nullptr;
}
c10::IValue StaticModule::operator()(
const std::vector<c10::IValue>& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
return runtime()(args, kwargs);
}
c10::IValue StaticModule::operator()(
std::vector<c10::IValue>&& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
return runtime()(std::move(args), kwargs);
}
StaticRuntime::StaticRuntime(const StaticModule& sm)
: static_module_(sm),
manage_output_tensors_enabled_(sm.opts().manage_output_tensors),
nodes_(sm.nodes()) {
const auto total_num_node_outputs = std::accumulate(
nodes_.begin(),
nodes_.end(),
0,
[](uint32_t sum, const ProcessedNode& pnode) {
return sum + pnode.num_outputs();
});
values_.resize(
sm.num_inputs() + sm.constants().size() + total_num_node_outputs);
const auto inputs_index_offset = 0;
const auto constants_index_offset = inputs_index_offset + sm.num_inputs();
const auto constants_begin_it = values_.begin() + constants_index_offset;
const auto constants_end_it = constants_begin_it + sm.constants().size();
std::copy(sm.constants().begin(), sm.constants().end(), constants_begin_it);
for (const auto idx : c10::irange(sm.nodes().size())) {
auto& n = nodes_[idx];
n.set_values(values_.data());
}
// TODO: can we convert outputs_ to store indices?
for (auto index : sm.output_indices()) {
outputs_.emplace_back(&values_[index]);
}
}
StaticRuntime::~StaticRuntime() = default;
void StaticRuntime::set_inputs(
const std::vector<IValue>& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
if (!kwargs.empty()) {
// This is not ideal
TORCH_CHECK(
static_module_.schema(),
"Schema is not available. Consider creating the Static Runtime "
"with StaticModule(const torch::jit::Module& m) instead.");
std::vector<c10::IValue> stack;
stack.reserve(static_module_.num_inputs());
if (static_module_.first_input_is_self()) {
stack.emplace_back(static_module_.module()._ivalue());
}
stack.insert(stack.end(), args.begin(), args.end());
static_module_.schema()->checkAndNormalizeInputs(stack, kwargs);
DCHECK_EQ(static_module_.num_inputs(), stack.size());
for (const auto i : c10::irange(stack.size())) {
Input(i) = std::move(stack[i]);
}
} else {
if (static_module_.first_input_is_self()) {
Input(0) = static_module_.module()._ivalue();
DCHECK_EQ(static_module_.num_inputs(), args.size() + 1);
for (const auto i : c10::irange(args.size())) {
Input(i + 1) = args[i];
}
} else {
DCHECK_EQ(static_module_.num_inputs(), args.size());
for (const auto i : c10::irange(args.size())) {
Input(i) = args[i];
}
}
}
}
void StaticRuntime::set_inputs(
std::vector<IValue>&& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
if (!kwargs.empty()) {
// This is not ideal
TORCH_CHECK(
static_module_.schema(),
"Schema is not available. Consider creating the Static Runtime "
"with StaticModule(const torch::jit::Module& m) instead.");
std::vector<c10::IValue> stack;
stack.reserve(static_module_.num_inputs());
if (static_module_.first_input_is_self()) {
stack.emplace_back(static_module_.module()._ivalue());
}
stack.insert(
stack.end(),
std::make_move_iterator(args.begin()),
std::make_move_iterator(args.end()));
static_module_.schema()->checkAndNormalizeInputs(stack, kwargs);
DCHECK_EQ(static_module_.num_inputs(), stack.size());
for (const auto i : c10::irange(stack.size())) {
Input(i) = std::move(stack[i]);
}
} else {
if (static_module_.first_input_is_self()) {
Input(0) = static_module_.module()._ivalue();
DCHECK_EQ(static_module_.num_inputs(), args.size() + 1);
for (const auto i : c10::irange(args.size())) {
Input(i + 1) = std::move(args[i]);
}
} else {
DCHECK_EQ(static_module_.num_inputs(), args.size());
for (const auto i : c10::irange(args.size())) {
Input(i) = std::move(args[i]);
}
}
}
}
void StaticRuntime::create_memory_planner() {
if (!planner_) {
planner_ = std::make_unique<MemoryPlanner>(
this,
static_module_.values_share_same_storage(),
static_module_.value_group(),
static_module_.opts().enable_out_variant,
manage_output_tensors_enabled_);
}
}
c10::IValue StaticRuntime::move_outputs_to_tuple(uint32_t num_outputs) {
#ifndef NDEBUG
for (const auto i : c10::irange(num_outputs)) {
// The exact output tensor should never be managed.
DCHECK(!isManagedOutputTensor(*outputs_[i]));
}
#endif
switch (num_outputs) {
case 1:
return c10::ivalue::Tuple::create(std::move(*outputs_[0]));
case 2:
return c10::ivalue::Tuple::create(
std::move(*outputs_[0]), std::move(*outputs_[1]));
case 3:
return c10::ivalue::Tuple::create(
std::move(*outputs_[0]),
std::move(*outputs_[1]),
std::move(*outputs_[2]));
default: {
std::vector<c10::IValue> outputs;
outputs.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
// use move here. Otherwise, clean up outputs_[i] explicitly
outputs.emplace_back(std::move(*outputs_[i]));
}
return c10::ivalue::Tuple::create(std::move(outputs));
}
}
}
/// [Check and correct bad schema alias info at runtime]
/// Static runtime relies on the operator schema's alias info to be correct for
/// memory planning. Because it's hard to enforce the alias info to be correct,
/// we need to do runtime detection for accidental aliases that do not comply
/// with the schema. Only aliases of managed tensors are problematic. To avoid
/// runtime crashes, we can add runtime detection and force the op to comply
/// with its schema by cloning the alias. Because all managed tensors' data_ptrs
/// are part of the internal buffer that the MemoryPlanner allocates, we can
/// check aliases by checking the memory overlap with this internal buffer. But
/// a tensor's storage can be resized during inferenceso we need another way to
/// handle the resized case.
///
/// There are two ways for incorrect schema to break memory planning. Let's look
/// at two examples:
///
/// Example 1:
/// @code
/// def forward(x):
/// a = x + x
/// b = bad_op(a) # b ends up aliasing a incorrectly
/// return (b)
/// @endcode
/// bad_op: its schema says it returns a new Tensor, but it actually returns an
/// alias. In this case, the memory planner would recognize `a` as a managed
/// tensor and clean up its memory before returning `b`. But `b` is actually an
/// alias of `a`, when `a`'s data_ptr get reset, `b`'s data_ptr gets reset too.
///
/// Example 2:
/// @code
/// def forward(x):
/// a = x + x
/// a2 = bad_op(a) # a2 ends up alias a incorrectly
/// b = a + a
/// c = b * b # c shares storage with a
/// d = c + 2 # d shares storage with b
/// e = a2 * a2
/// return (d, e)
/// @endcode
/// With the memory reuse algorithm, `c` could end up sharing storage with `a`,
/// but because of bad_op, `a2` now aliases `a`. `c` overwrites `a` and
/// therefore `a2`, leading to the wrong results. We solve this problem with two
/// steps. Note this doesn't happen with the current memory reuse algorithm
/// because of the way it's implemented. Things could change with a different
/// implementation.
///
/// Step 1, annotate the ProcessedNodes with a flag `check_memory_overlap_` set
/// to true if its outputs do not alias its inputs as indicated by the AliasDb
/// and all of its outputs are Tensors. Then at runtime, we check that the
/// nodes' output tensors do not overlap with the internal buffer that the
/// MemoryPlanner allocates. For latency concerns, we only run this check for
/// fallback ops. The schemas of native ops and out variants are vetted and
/// enforced with static runtime unit tests. For the first iteration, we do a
/// full memory overlap check with
/// ProcessedNode::verify_and_correct_memory_overlap() because the internal
/// buffer doesn't exist yet.
///
/// Step 2, if a managed tensor gets resized during inference, it gets a new
/// data_ptr which is not from the buffer. We can tackle this corner case by
/// delaying the deallocation of the managed tensors to after the outputs are no
/// longer used (essentially merging the internal/output buffers into one).
/// Before the merging is implemented, we add another flag `overlap_detected_`
/// to flag any node with overlap detected in Step 1 and do a full memory
/// overlap check if the fast check (by checking memory overlap with internal
/// buffer) fails. There is still a corner case that fails with the added flag.
/// If a resize is triggered at the same time as the op creating an alias at the
/// same time, the current checks would fail to detect the alias.
///
/// There is another case of failure that step 2 can prevent. With
/// StaticModule::opts().cleanup_activations = false, the returned Static
/// Runtime instance in the instance pool can be re-entered while an unintended
/// output tensor's alias is still being used by the client (in the
/// multi-threaded setting). This can only be prevented by delaying the
/// deallocation and returning the Static Runtime instance after the client is
/// done with the outputs.
void StaticRuntime::verify_and_correct_memory_overlap(ProcessedNode& n) {
// The slow check can be removed once the internal/output buffers are merged
if (C10_UNLIKELY(n.check_outputs_for_memory_overlap())) {
if (C10_UNLIKELY(!planner_ && static_module_.opts().cleanup_activations)) {
// slow check, for first iter only with cleanup_activations = true
n.verify_and_correct_memory_overlap();
} else if (planner_) {
bool overlap_detected_with_fast_check = false;
for (size_t i = 0; i < n.outputs().size(); i++) {
at::Tensor& t = n.Output(i).toTensor();
if (planner_->overlapWithInternalBuffer(t.data_ptr())) {
VLOG(1) << "Detected alias for node: " << PrintNode(n.node());
n.Output(i) = at::native::clone(t, c10::nullopt);
// set flag if overlap detected
overlap_detected_with_fast_check = true;
n.set_outputs_memory_overlap_detected();
}
}
if (n.outputs_memory_overlap_detected() &&
!overlap_detected_with_fast_check) {
// slow check. Only run when the fast check fails.
n.verify_and_correct_memory_overlap();
}
}
}
}
template <typename IValueList>
c10::IValue StaticRuntime::run_impl(
IValueList&& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
// We assume inference workloads, so we do not need
// autograd. Enabling this is a significant win on dispatcher
// overhead because it saves a round of dispatch for at least some
// functions, such as resize_ and resize_as_.
c10::InferenceMode mode;
if (planner_) {
DCHECK(!manage_output_tensors_enabled_ || checkOutputTensorMemoryLeaks());
planner_->allocate();
}
set_inputs(std::forward<IValueList>(args), kwargs);
// NB: before optimizing the order of execution, ensure that the
// memory optimization pass (LivenessMap) is
// aware of the new order!
for (auto& n : nodes_) {
// LOG(INFO) << "Running node: " << PrintNode(n.node());
n.run();
// Check for incorrect schema alias info.
verify_and_correct_memory_overlap(n);
}
if (static_module_.opts().cleanup_activations) {
// MemoryPlanner is created after the first invocation of `run()`. This is
// done intentionally because MemoryPlanner uses `Tensor` sizes of the
// previous `run()` for memory planning of subsequent runs
create_memory_planner();
planner_->deallocate();
// clean up owning refs of input tensors
clean_up_input_ivalues();
}
// no need to keep references of outputs in static runtime anymore
if (static_module_.num_outputs() > 1) {
return move_outputs_to_tuple(static_module_.num_outputs());
}
#ifndef NDEBUG
check_for_memory_leak(false);
#endif
// The exact output tensor should never be managed.
DCHECK(!isManagedOutputTensor(*outputs_[0]));
// use move here. Otherwise, clean up outputs_[0] explicitly
return std::move(*outputs_[0]);
}
template <typename IValueList>
c10::IValue StaticRuntime::run_impl_record_functions(
IValueList&& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
bool pre_sampled = false;
if (C10_UNLIKELY(at::shouldRunRecordFunction(&pre_sampled))) {
at::RecordFunction guard(
at::RecordScope::TORCHSCRIPT_FUNCTION, pre_sampled);
if (guard.isActive()) {
if (guard.needsInputs()) {
guard.before("forward", &args);
} else {
guard.before("forward");
}
}
return run_impl(std::forward<IValueList>(args), kwargs);
}
return run_impl(std::forward<IValueList>(args), kwargs);
}
c10::IValue StaticRuntime::operator()(
const std::vector<c10::IValue>& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
return run_impl(args, kwargs);
#else
return run_impl_record_functions(args, kwargs);
#endif
}
c10::IValue StaticRuntime::operator()(
std::vector<c10::IValue>&& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
return run_impl(std::move(args), kwargs);
#else
return run_impl_record_functions(std::move(args), kwargs);
#endif
}
namespace {
std::string generate_latency_json(const std::string& label, double millis) {
#ifdef FBCODE_CAFFE2
folly::dynamic json = folly::dynamic::object();
json["type"] = label;
json["metric"] = "latency";
json["unit"] = "ms";
json["value"] = millis;
return "PyTorchObserver " + folly::toJson(json);
#else
return "";
#endif
}
} // namespace
void StaticRuntime::benchmark(
const std::vector<std::vector<c10::IValue>>& args_list,
const std::vector<std::unordered_map<std::string, c10::IValue>>&
kwargs_list,
const int warmup_runs,
const int main_runs,
bool print_per_node_time,
bool generate_ai_pep_output) {
TORCH_CHECK(
kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());
std::cout << "Input size: " << args_list.size() << std::endl;
if (args_list.size() == 0) {
return;
}
float time_per_iter =
benchmark_model(args_list, kwargs_list, warmup_runs, main_runs);
std::cout << "Static runtime ms per iter: " << time_per_iter
<< ". Iters per second: " << 1000.0 / time_per_iter << std::endl;
IndividualMetrics results =
benchmark_individual_ops(args_list, kwargs_list, warmup_runs, main_runs);
if (print_per_node_time) {
for (const auto i : c10::irange(nodes_.size())) {
const Node* node = nodes_[i].node();
std::cout << "Node #" << i << ": " << results.time_per_node[i]
<< " ms/iter, ";
node->print(std::cout, 0, nullptr, false);
}
}
std::vector<std::pair<std::string, double>> time_per_node_type_vec{
results.time_per_node_type.begin(), results.time_per_node_type.end()};
std::sort(
time_per_node_type_vec.begin(),
time_per_node_type_vec.end(),
[](auto& left, auto& right) { return left.second > right.second; });
std::cout << "Time per node type:" << std::endl;
for (const auto& p : time_per_node_type_vec) {
const std::string& kind = p.first;
const double ms = p.second;
std::cout << std::setw(15) << ms << " ms. " << std::setw(10)
<< results.percent_per_node_type[kind] << "%. " << kind << " ("
<< results.instances_per_node_type[kind] << " nodes";
if (results.out_nodes.count(kind)) {
std::cout << ", out variant)" << std::endl;
} else if (results.native_nodes.count(kind)) {
std::cout << ", native)" << std::endl;
} else {
std::cout << ")" << std::endl;
}
if (generate_ai_pep_output) {
LOG(INFO) << generate_latency_json(kind, ms);
}
}
if (generate_ai_pep_output) {
LOG(INFO) << generate_latency_json(
"static_runtime_first_iter", results.first_iter_time);
}
std::cout << std::setw(15) << results.total_time << " ms. in Total"
<< std::endl;
std::cout << "StaticRuntime setup time: " << results.setup_time << " ms"
<< std::endl;
std::cout << "Memory allocation time: " << results.memory_alloc_time
<< " ms\n";
std::cout << "Memory deallocation time: " << results.memory_dealloc_time
<< " ms" << std::endl;
std::cout << "Outputs deallocation time: " << results.output_dealloc_time
<< " ms" << std::endl;
std::cout << "First iter time: " << results.first_iter_time << " ms"
<< std::endl;
std::cout << "Number of operators: " << nodes_.size() << std::endl;
if (planner_) {
std::cout << "Total number of managed tensors: "
<< planner_->total_num_managed_tensors() << std::endl;
std::cout << "Total number of managed output tensors: "
<< planner_->total_num_managed_output_tensors() << std::endl;
std::cout << "Total number of unmanaged values: "
<< planner_->total_num_unmanaged() << std::endl;
std::cout << "Number of unmanaged values requiring cleanup: "
<< planner_->num_unmanaged_non_scalars() << std::endl;
std::cout << "Number of unmanaged values not requiring cleanup: "
<< planner_->num_unmanaged_scalars() << std::endl;
std::cout << "Total memory managed: " << planner_->total_managed()
<< " bytes" << std::endl;
if (static_module_.opts().optimize_memory) {
std::cout << "Total number of reused tensors: "
<< planner_->total_reused_tensors() << std::endl;
}
std::cout << "Total number of 'out' variant nodes/total number of nodes: "
<< results.out_nodes_count << "/" << results.total_nodes_count
<< " ("
<< 100.0 * (results.out_nodes_count) /
static_cast<float>(results.total_nodes_count)
<< "%)" << std::endl;
}
check_for_memory_leak();
#ifndef NDEBUG
std::unordered_map<std::string, c10::IValue> empty_kwargs;
display_nodes(
args_list[0], kwargs_list.size() > 0 ? kwargs_list[0] : empty_kwargs);
#endif
}
float StaticRuntime::benchmark_model(
const std::vector<std::vector<c10::IValue>>& args_list,
const std::vector<std::unordered_map<std::string, c10::IValue>>&
kwargs_list,
const int warmup_runs,
const int main_runs) {
TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1);
TORCH_CHECK(
kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());
const bool is_kwargs_empty = kwargs_list.size() == 0;
const std::unordered_map<std::string, c10::IValue> empty_kwargs;
for (const auto i : c10::irange(warmup_runs)) {
(void)i; // Suppress unused variable warning
for (const auto j : c10::irange(args_list.size())) {
operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
if (manage_output_tensors_enabled_) {
deallocateOutputTensors();
}
}
}
caffe2::Timer timer;
for (const auto i : c10::irange(main_runs)) {
(void)i; // Suppress unused variable warning
for (const auto j : c10::irange(args_list.size())) {
operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
if (manage_output_tensors_enabled_) {
deallocateOutputTensors();
}
}
}
float millis = timer.MilliSeconds();
return millis / (static_cast<float>(main_runs) * args_list.size());
}
bool display_ivalue(const IValue& iv) {
if (iv.isTensor()) {
std::cout << "Tensor " << iv.toTensor().toString() << " {";
for (const auto i : c10::irange(iv.toTensor().sizes().size())) {
std::cout << iv.toTensor().sizes()[i];
if (iv.toTensor().sizes().size() > i + 1) {
std::cout << ", ";
}
}
std::cout << "}\n";
return true;
} else if (iv.isTensorList()) {
std::cout << "TensorList {" << iv.toTensorList().size() << "}\n";
return true;
} else if (iv.isGenericDict()) {
std::cout << "Dict {" << iv.toGenericDict().size() << "}\n";
return true;
} else if (iv.isTuple()) {
std::cout << "Tuple {" << iv.toTupleRef().elements().size() << "}\n";
return true;
} else if (iv.isInt()) {
std::cout << "int {" << iv.toInt() << "}\n";
return true;
} else if (iv.isBool()) {
std::cout << "bool {" << iv.toBool() << "}\n";
return true;
} else if (iv.isDouble()) {
std::cout << "double {" << iv.toDouble() << "}\n";
return true;
}
return false;
}
void display_pnode_info(const ProcessedNode& pnode) {
pnode.node()->print(std::cout, 0, nullptr, false);
for (const auto i : c10::irange(pnode.num_inputs())) {
std::cout << "\ti" << i << ": ";
if (!display_ivalue(pnode.Input(i))) {
std::cout << *(pnode.node()->inputs()[i]->type()) << '\n';
}
}
const auto outputs = pnode.outputs();
for (const auto i : c10::irange(outputs.size())) {
std::cout << "\to" << i << ": ";
if (!display_ivalue(outputs[i])) {
std::cout << *(pnode.node()->outputs()[i]->type()) << '\n';
}
}
}
void StaticRuntime::display_nodes(
const std::vector<c10::IValue>& args,
const std::unordered_map<std::string, c10::IValue>& kwargs) {
c10::InferenceMode mode;
if (planner_) {
planner_->allocate();
}
set_inputs(args, kwargs);
for (auto& node : nodes_) {
node.run();
display_pnode_info(node);
}
if (static_module_.opts().cleanup_activations) {
// MemoryPlanner is created after the first invocation of `run()`. This is
// done intentionally because MemoryPlanner uses `Tensor` sizes of the
// previous `run()` for memory planning of subsequent runs
create_memory_planner();
planner_->deallocate();
// clean up owning refs of input tensors
clean_up_input_ivalues();
}
}
StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops(
const std::vector<std::vector<c10::IValue>>& args_list,
const std::vector<std::unordered_map<std::string, c10::IValue>>&
kwargs_list,
const int warmup_runs,
const int main_runs) {
TORCH_CHECK(
kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());
TORCH_CHECK(warmup_runs >= 1 && main_runs >= 1);
if (args_list.size() == 0) {
return {};
}
const bool is_kwargs_empty = kwargs_list.size() == 0;
const std::unordered_map<std::string, c10::IValue> empty_kwargs;
bool manage_output_tensors = static_module_.opts().manage_output_tensors;
// See comment on above use of InferenceMode for
// explanation.
c10::InferenceMode mode;
IndividualMetrics results;
results.time_per_node.resize(nodes_.size(), 0);
// setup time
caffe2::Timer timer;
set_inputs(args_list[0], is_kwargs_empty ? empty_kwargs : kwargs_list[0]);
results.setup_time = timer.MilliSeconds();
// The first iteration profiles each node's output Tensors' sizes and
// initializes the memory planner with the profile information. Folllowing
// iterations just use the already established memory planning.
timer.Start();
operator()(args_list[0], is_kwargs_empty ? empty_kwargs : kwargs_list[0]);
if (manage_output_tensors) {
deallocateOutputTensors();
}
results.first_iter_time = timer.MilliSeconds();
// warmup runs
for (const auto i : c10::irange(warmup_runs - 1)) {
(void)i; // Suppress unused variable warning
for (const auto j : c10::irange(args_list.size())) {
operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
if (manage_output_tensors) {
deallocateOutputTensors();
}
}
}
// main runs
for (const auto i : c10::irange(main_runs)) {
(void)i; // Suppress unused variable warning
for (const auto j : c10::irange(args_list.size())) {
set_inputs(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
timer.Start();
if (planner_) {
planner_->allocate();
}
float millis = timer.MilliSeconds();
results.memory_alloc_time += millis;
for (const auto k : c10::irange(nodes_.size())) {
timer.Start();
nodes_[k].run();
millis = timer.MilliSeconds();
results.time_per_node[k] += millis;
}
timer.Start();
if (static_module_.opts().cleanup_activations) {
create_memory_planner();
planner_->deallocate();
// clean up owning refs of input tensors
clean_up_input_ivalues();
}
if (manage_output_tensors) {
deallocateOutputTensors();
}
millis = timer.MilliSeconds();
results.memory_dealloc_time += millis;
timer.Start();
// no need to keep references of outputs in static runtime anymore
c10::IValue output;
if (static_module_.num_outputs() > 1) {
output = move_outputs_to_tuple(static_module_.num_outputs());
}
#ifndef NDEBUG
check_for_memory_leak(false);
#endif
// use move here. Otherwise, clean up outputs_[0] explicitly
output = std::move(*outputs_[0]);
// release outputs explicitly to measure the time it takes
output = IValue();
millis = timer.MilliSeconds();
results.output_dealloc_time += millis;
}
}
// post processing
const float num_total_iters =
(static_cast<float>(main_runs) * args_list.size());
for (const auto i : c10::irange(nodes_.size())) {
const Node* node = nodes_[i].node();
std::string kind = std::string(node->kind().toQualString());
results.time_per_node[i] /= num_total_iters;
results.time_per_node_type[kind] += results.time_per_node[i];
results.instances_per_node_type[kind]++;
if (nodes_[i].has_out_variant()) {
results.out_nodes.insert(kind);
results.out_nodes_count++;
} else if (nodes_[i].has_native()) {
results.native_nodes.insert(kind);
}
results.total_time += results.time_per_node[i];
}
results.total_nodes_count = nodes_.size();
results.memory_alloc_time /= num_total_iters;
results.memory_dealloc_time /= num_total_iters;
results.output_dealloc_time /= num_total_iters;
for (const auto& p : results.time_per_node_type) {
const std::string& kind = p.first;
results.percent_per_node_type[kind] = p.second / results.total_time * 100;
}
return results;
}
void StaticRuntime::check_for_memory_leak(bool output_returned) {
if (!static_module_.opts().cleanup_activations) {
return;
}
// check for inputs
for (const auto i : c10::irange(static_module_.num_inputs())) {
TORCH_CHECK(values_[i].isNone(), "Input ", i, " was not cleaned up");
}
FastSet<const IValue*> output_ivalues(outputs_.begin(), outputs_.end());
for (const auto n : c10::irange(nodes_.size())) {
auto& pnode = nodes_[n];
for (const auto i : c10::irange(pnode.num_outputs())) {
const IValue* ival = &pnode.Output(i);
const Value* val = pnode.node()->output(i);
if (planner_ && planner_->isManagedOutputTensorValue(val)) {
// `ival` contains a managed output tensor that the runtime doesn't
// reclaim at the end of an iteration, but the client does so
// by explicitly calling `StaticRuntime::deallocateOutputTensors`.
continue;
}
const std::string error_msg = "Output " + c10::to_string(i) + ", %" +
val->debugName() + " of node " + c10::to_string(n) +
" was not cleaned up";
if (output_ivalues.count(ival) == 0) {
// check for intermediates
if (!ival->isNone()) {
TORCH_CHECK(
ival->isTensor() ||
static_module_.is_optimizable_container_type(pnode.node()) ||
doesNotHeapAllocateWhenStoredInIValue(*val->type()),
error_msg);
if (ival->isTensor()) {
const auto& t = ival->toTensor();
if (t.defined()) {
auto* storage_impl = t.storage().unsafeGetStorageImpl();
TORCH_CHECK(
storage_impl->data() == nullptr ||
(planner_ &&
planner_->isManagedStorageImpl(storage_impl)),
error_msg);
}
}
}
} else {
// check for outputs
if (output_returned) {
TORCH_CHECK(ival->isNone(), error_msg);
}
}
}
}
VLOG(1) << "Finished checking for memory leak";
}
void StaticRuntime::deallocateOutputTensors() {
if (!static_module_.opts().manage_output_tensors) {
TORCH_CHECK(
!planner_ || planner_->numOutputBufferBytes() == 0,
"manage_output_tensors is disabled, but output tensor buffer is not empty.");
return;
}
if (planner_) {
planner_->deallocateOutputTensors();
DCHECK(checkOutputTensorMemoryLeaks());
}
}
bool StaticRuntime::checkOutputTensorMemoryLeaks() {
if (!static_module_.opts().manage_output_tensors || !planner_) {
return true;
}
for (const auto n : c10::irange(nodes_.size())) {
auto& pnode = nodes_[n];
for (const auto i : c10::irange(pnode.num_outputs())) {
const IValue* ival = &pnode.Output(i);
const Value* val = pnode.node()->output(i);
if (!planner_->isManagedOutputTensorValue(val)) {
continue;
}
const auto& t = ival->toTensor();
if (t.defined()) {
auto* storage_impl = t.storage().unsafeGetStorageImpl();
const std::string error_msg = "Output " + c10::to_string(i) + ", %" +
val->debugName() + " of node " + c10::to_string(n) +
" was not cleaned up";
TORCH_CHECK(storage_impl->data() == nullptr, error_msg);
}
}
}
VLOG(1) << "Finished checking for memory leak from output tensors";
return true;
}
bool StaticRuntime::isManagedOutputTensor(const IValue& ivalue) {
return planner_ && planner_->isManagedOutputTensor(ivalue);
}
void StaticRuntime::disableManageOutputTensors() {
if (!manage_output_tensors_enabled_) {
return;
}
manage_output_tensors_enabled_ = false;
if (!planner_) {
return;
}
// Reset all IValues and destruct planner_ so that it can be reconstructed in
// the next run.
for (auto& n : nodes_) {
for (const auto i : c10::irange(n.outputs().size())) {
n.Output(i) = IValue();
}
}
planner_.reset();
}
ProcessedNode::ProcessedNode(
Node* node,
ProcessedNodeInputs inputs,
uint16_t outputs_offset,
bool enable_out_variant,
bool check_memory_overlap)
: node_(node),
inputs_(std::move(inputs)),
outputs_offset_(outputs_offset)
#ifndef PYTORCH_DISABLE_PER_OP_PROFILING
,
op_name_(node->kind().toQualString())
#endif
{
TORCH_CHECK(
node->outputs().size() < (1 << (sizeof(num_outputs_) * 8)),
node->outputs().size(),
" outputs to ProcessedNode ",
node->kind().toQualString(),
" is too many to use 2-byte indexing");
num_outputs_ = node->outputs().size();
if (enable_out_variant) {
std::function<void(ProcessedNode*)> f = getOutOfPlaceOperation(node);
if (f) {
fn_ = {f, FunctionKind::kOutVariant};
VLOG(1) << "Switch to out variant for node: " << PrintNode(node);
return;
}
}
{
std::function<void(ProcessedNode*)> f = getNativeOperation(node);
if (f) {
fn_ = {f, FunctionKind::kNativeFunction};
VLOG(1) << "Switch to native impl for node: " << PrintNode(node);
return;
}
}
{
const Operator& op = node->getOperator();
std::function<void(ProcessedNode*)> f =
[node_op = op.getOperation(node)](ProcessedNode* pnode) mutable {
std::vector<IValue> stack;
Node* node = pnode->node_;
const size_t size = node->inputs().size();
stack.reserve(size + (hasVarArgs(node) ? 1 : 0));
for (const auto i : c10::irange(size)) {
stack.emplace_back(pnode->Input(i));
}
// Need to store the number of inputs in stack for variadic ops.
if (hasVarArgs(node)) {
stack.emplace_back(static_cast<int>(size));
}
node_op(stack);
DCHECK_EQ(stack.size(), node->outputs().size());
for (const auto i : c10::irange(node->outputs().size())) {
pnode->Output(i) = std::move(stack[i]);
}
};
fn_ = {f, FunctionKind::kInterpreterFallback, check_memory_overlap};
VLOG(1) << "Fallback interpreter for node: " << PrintNode(node);
}
}
std::vector<IValue> ProcessedNode::inputs_ivalue_vec() const {
std::vector<IValue> result;
result.reserve(inputs_.size());
for (const auto idx : c10::irange(num_inputs())) {
result.emplace_back(Input(idx));
}
return result;
}
void ProcessedNode::run() {
#ifndef PYTORCH_DISABLE_PER_OP_PROFILING
bool pre_sampled = false;
if (C10_UNLIKELY(at::shouldRunRecordFunction(&pre_sampled))) {
at::RecordFunction guard(at::RecordScope::FUNCTION, pre_sampled);
if (guard.isActive()) {
if (guard.needsInputs()) {
guard.before(get_op_name(), inputs_ivalue_vec());
} else {
guard.before(get_op_name());
}
}
fn_.f(this);
} else {
fn_.f(this);
}
#else
fn_.f(this);
#endif
#ifndef NDEBUG
verify_no_memory_overlap();
#endif
}
static bool checkNoMemoryOverlap(const at::Tensor& a, const at::Tensor& b) {
at::MemOverlapStatus status = at::get_overlap_status(a, b);
if (status == at::MemOverlapStatus::FULL ||
status == at::MemOverlapStatus::PARTIAL) {
return false;
}
if (status == at::MemOverlapStatus::TOO_HARD) {
LOG(WARNING) << "Detected TOO_HARD memory overlap status";
}
return true;
}
bool ProcessedNode::verify_no_memory_overlap() const {
return verify_outputs_dont_overlap_each_other() &&
verify_inputs_dont_overlap_outputs();
}
bool ProcessedNode::verify_outputs_dont_overlap_each_other() const {
for (const auto i : c10::irange(num_outputs_)) {
if (!Output(i).isTensor()) {
continue;
}
const auto& out0_t = Output(i).toTensor();
for (const auto j : c10::irange(i + 1, num_outputs_)) {
if (!Output(j).isTensor()) {
continue;
}
const auto& out1_t = Output(j).toTensor();
if (!checkNoMemoryOverlap(out0_t, out1_t)) {
LOG(INFO) << "Node output " << i << " overlaps with output " << j
<< ", " << PrintNode(node_);
return false;
}
}
}
return true;
}
bool ProcessedNode::verify_inputs_dont_overlap_outputs() const {
auto schema = node()->maybeSchema();
// skip memory overlap check for mutable ops with only one output
if (!schema || (schema->is_mutable() && num_outputs_ == 1)) {
return true;
}
for (const auto i : c10::irange(inputs_.size())) {
const IValue* in = &Input(i);
if (!in->isTensor()) {
continue;
}
const auto& in_t = in->toTensor();
for (const auto j : c10::irange(num_outputs_)) {
const IValue& out = Output(j);
if (!out.isTensor()) {
continue;
}
const auto& out_t = out.toTensor();
if (!checkNoMemoryOverlap(in_t, out_t)) {
LOG(INFO) << "Node input " << i << " overlaps with output " << j << ", "
<< PrintNode(node_);
LOG(INFO) << *schema;
return false;
}
}
}
return true;
}
void ProcessedNode::verify_and_correct_memory_overlap() {
for (const auto i : c10::irange(inputs_.size())) {
const IValue& in = Input(i);
if (!in.isTensor()) {
continue;
}
const auto& in_t = in.toTensor();
for (const auto j : c10::irange(num_outputs_)) {
const auto& out_t = Output(j).toTensor();
if (!checkNoMemoryOverlap(in_t, out_t)) {
VLOG(1) << "Detected alias for node: " << PrintNode(node());
Output(i) = at::native::clone(out_t, c10::nullopt);
set_outputs_memory_overlap_detected();
}
}
}
}
} // namespace jit
} // namespace torch