Files
pytorch/test/cpp/jit/test_constant_pooling.cpp
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

115 lines
3.1 KiB
C++

#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <sstream>
#include <string>
namespace torch {
namespace jit {
TEST(ConstantPoolingTest, Int) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%8 : int = prim::Constant[value=1]()
%10 : int = prim::Constant[value=1]()
return (%8, %10)
)IR",
&*graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count("prim::Constant", 1, /*exactly*/ true)
->run(*graph);
}
TEST(ConstantPoolingTest, PoolingAcrossBlocks) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%cond : Tensor):
%a : str = prim::Constant[value="bcd"]()
%3 : bool = aten::Bool(%cond)
%b : str = prim::If(%3)
block0():
%b.1 : str = prim::Constant[value="abc"]()
-> (%b.1)
block1():
%b.2 : str = prim::Constant[value="abc"]()
-> (%b.2)
%7 : (str, str) = prim::TupleConstruct(%a, %b)
return (%7)
)IR",
&*graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count("prim::Constant[value=\"abc\"]", 1, /*exactly*/ true)
->check_count("prim::Constant[value=\"bcd\"]", 1, /*exactly*/ true)
->run(*graph);
}
TEST(ConstantPoolingTest, PoolingDifferentDevices) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%2 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=1]()
%5 : int? = prim::Constant()
%7 : Device? = prim::Constant()
%15: bool = prim::Constant[value=0]()
%10 : int = prim::Constant[value=6]()
%3 : int[] = prim::ListConstruct(%1, %2)
%x : Tensor = aten::tensor(%3, %5, %7, %15)
%y : Tensor = aten::tensor(%3, %10, %7, %15)
%9 : int[] = prim::ListConstruct(%1, %2)
%z : Tensor = aten::tensor(%9, %10, %7, %15)
prim::Print(%x, %y, %z)
return (%1)
)IR",
&*graph);
// three tensors created - two different devices among the three
// don't have good support for parsing tensor constants
ConstantPropagation(graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count(
"Float(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
1,
/*exactly*/ true)
->check_count(
"Long(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
1,
/*exactly*/ true)
->run(*graph);
}
TEST(ConstantPoolingTest, DictConstantPooling) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%0 : int = prim::Constant[value=1]() # test/elias.py:6:9
%1 : int = prim::Constant[value=2]() # test/elias.py:6:12
%a.1 : Dict(int, int) = prim::DictConstruct(%0, %1)
%b.1 : Dict(int, int) = prim::DictConstruct(%1, %1)
return (%a.1, %b.1)
)IR",
&*graph);
ConstantPropagation(graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count(
"Dict(int, int) = prim::Constant",
2,
/*exactly*/ true)
->run(*graph);
}
} // namespace jit
} // namespace torch