mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
All changes other than the one to `tools/linter/adapters/s3_init_config.json` are generated by newer clang-format Pull Request resolved: https://github.com/pytorch/pytorch/pull/153889 Approved by: https://github.com/cyyever, https://github.com/atalman
1701 lines
57 KiB
C++
1701 lines
57 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/frontend/ir_emitter.h>
|
|
#include <torch/csrc/jit/ir/alias_analysis.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/ir/type_hashing.h>
|
|
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
|
|
#include <torch/csrc/jit/runtime/custom_operator.h>
|
|
#include <torch/csrc/jit/runtime/graph_iterator.h>
|
|
|
|
#include <ATen/TensorOperators.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
|
|
return c10::AliasAnalysisKind::FROM_SCHEMA;
|
|
}
|
|
|
|
// Fixture to set up a graph and make assertions clearer
|
|
class TopologicalMoveTest : public ::testing::Test {
|
|
protected:
|
|
TopologicalMoveTest() {
|
|
createGraph();
|
|
aliasDb = std::make_unique<AliasDb>(graph);
|
|
}
|
|
|
|
// Nodes are named after their output.
|
|
// e.g. "a" is an alias for "the node that outputs the value `a`"
|
|
void createGraph() {
|
|
graph = std::make_shared<Graph>();
|
|
createNode("a", {});
|
|
createNode("b", {"a"});
|
|
createNode("c", {});
|
|
createNode("d", {"a", "b"});
|
|
createNode("e", {"c", "b"});
|
|
createNode("f", {"e"});
|
|
createNode("g", {"e"});
|
|
createNode("h", {"g"});
|
|
createNode("i", {"g"});
|
|
createNode("j", {"i"});
|
|
createNode("k", {"i"});
|
|
createNode("l", {"a"});
|
|
createNode("m", {}, {"l"}); // block depends on l
|
|
createNode("n", {"m"});
|
|
createNode("o", {"n"});
|
|
createNode("p", {});
|
|
createNode("q", {});
|
|
createNode("r", {"q"});
|
|
createNode("s", {"q"});
|
|
|
|
graph->lint();
|
|
}
|
|
|
|
void createNode(
|
|
const std::string& name,
|
|
const std::vector<std::string>& inputNames,
|
|
const std::vector<std::string>& blockInputNames = {}) {
|
|
std::vector<Value*> inputs;
|
|
for (const auto& name_ : inputNames) {
|
|
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
|
|
inputs.push_back(nodes.at(name_)->output());
|
|
}
|
|
auto node = graph->appendNode(graph->create(prim::AutogradZero, inputs));
|
|
node->output()->setDebugName(name);
|
|
nodes[name] = node;
|
|
|
|
if (blockInputNames.size() != 0) {
|
|
node->addBlock();
|
|
std::vector<Value*> blockDeps;
|
|
for (const auto& name_ : blockInputNames) {
|
|
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
|
|
blockDeps.push_back(nodes.at(name_)->output());
|
|
}
|
|
|
|
auto block = node->blocks().at(0);
|
|
block->appendNode(graph->create(prim::AutogradZero, blockDeps));
|
|
}
|
|
}
|
|
|
|
bool moveBeforeTopologicallyValid(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint) {
|
|
std::function<bool(Node*, Node*)> func =
|
|
[this](Node* toInsert, Node* insertPoint) {
|
|
return aliasDb->moveBeforeTopologicallyValid(toInsert, insertPoint);
|
|
};
|
|
return moveWithChecks(toInsert, insertPoint, func);
|
|
}
|
|
|
|
bool moveAfterTopologicallyValid(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint) {
|
|
std::function<bool(Node*, Node*)> func =
|
|
[this](Node* toInsert, Node* insertPoint) {
|
|
return aliasDb->moveAfterTopologicallyValid(toInsert, insertPoint);
|
|
};
|
|
return moveWithChecks(toInsert, insertPoint, func);
|
|
}
|
|
|
|
bool moveWithChecks(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint,
|
|
std::function<bool(Node*, Node*)> func) {
|
|
auto n = nodes.at(toInsert);
|
|
auto insert = nodes.at(insertPoint);
|
|
bool isAfter = n->isAfter(insert);
|
|
|
|
std::vector<Node*> originalOrdering;
|
|
Node* original = isAfter ? n->next() : n->prev();
|
|
|
|
auto curNode = original;
|
|
while (curNode != n->owningBlock()->return_node()) {
|
|
originalOrdering.push_back(curNode);
|
|
if (isAfter) {
|
|
curNode = curNode->next();
|
|
} else {
|
|
curNode = curNode->prev();
|
|
}
|
|
}
|
|
|
|
const auto couldMove = func(n, insert);
|
|
// Check the graph is okay
|
|
graph->lint();
|
|
|
|
// If this is the picture of nodes
|
|
// <some nodes> ... toInsert ... <some more nodes> ... insertPoint
|
|
// ^----------^ check that these nodes haven't moved
|
|
curNode = original;
|
|
size_t idx = 0;
|
|
while (curNode != n->owningBlock()->return_node()) {
|
|
EXPECT_TRUE(originalOrdering[idx] == curNode);
|
|
if (isAfter) {
|
|
curNode = curNode->next();
|
|
} else {
|
|
curNode = curNode->prev();
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
return couldMove;
|
|
}
|
|
|
|
void checkPostCondition(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint,
|
|
bool after) {
|
|
if (after) {
|
|
EXPECT_EQ(nodes.at(toInsert)->prev(), nodes.at(insertPoint));
|
|
} else {
|
|
EXPECT_EQ(nodes.at(toInsert)->next(), nodes.at(insertPoint));
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
std::shared_ptr<Graph> graph;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
std::unique_ptr<AliasDb> aliasDb;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
std::unordered_map<std::string, Node*> nodes;
|
|
};
|
|
|
|
TEST_F(TopologicalMoveTest, SplitsDeps) {
|
|
// Check that we are removing `this`'s deps properly when we need to split
|
|
// `this` and deps (see code for what the hell that means)
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("q", "s"));
|
|
checkPostCondition("q", "s", false);
|
|
}
|
|
|
|
// Move after
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardSimple) {
|
|
// Simple move backward
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("c", "a"));
|
|
checkPostCondition("c", "a", true);
|
|
}
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardInvalid) {
|
|
// simple invalid move backward
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("d", "a"));
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterNoOp) {
|
|
// doesn't actually move anything
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("f", "e"));
|
|
checkPostCondition("f", "e", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardMultipleDeps) {
|
|
// move backward with multiple dependencies
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("e", "c"));
|
|
checkPostCondition("e", "c", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardNonZeroWorkingSet) {
|
|
// Move backward with non-zero working set
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("k", "f"));
|
|
checkPostCondition("k", "f", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterForwardSimple) {
|
|
// Simple move forward
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("c", "d"));
|
|
checkPostCondition("c", "d", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterForwardNonZeroWorkingSet) {
|
|
// Move forward with non-zero working set
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("f", "l"));
|
|
checkPostCondition("f", "l", true);
|
|
}
|
|
|
|
// Move before
|
|
TEST_F(TopologicalMoveTest, MoveBeforeForwardSimple) {
|
|
// Simple move forward
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("b", "d"));
|
|
checkPostCondition("b", "d", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeBackwardSimple) {
|
|
// Simple move backward
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("c", "a"));
|
|
checkPostCondition("c", "a", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeNoOp) {
|
|
// doesn't actually move anything
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("a", "b"));
|
|
checkPostCondition("a", "b", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeForwardWithDeps) {
|
|
// move forward with deps
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("f", "m"));
|
|
checkPostCondition("f", "m", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeBackwardWithDeps) {
|
|
// move backward with deps
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("l", "f"));
|
|
checkPostCondition("l", "f", false);
|
|
}
|
|
|
|
// check that dependencies in blocks are recognized
|
|
TEST_F(TopologicalMoveTest, DepsDisallowMove) {
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("l", "m"));
|
|
EXPECT_FALSE(moveBeforeTopologicallyValid("m", "l"));
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("n", "l"));
|
|
EXPECT_FALSE(moveBeforeTopologicallyValid("l", "n"));
|
|
}
|
|
|
|
// Test that moveAfter(n) and moveBefore(n->next()) are not necessarily
|
|
// equivalent. Here, the dependency ordering is n -> o -> p. So we can't
|
|
// move `n` after `o`, but we can move `n` before `p` (which pushes `o` after
|
|
// `p`)
|
|
TEST_F(TopologicalMoveTest, MoveAfterBeforeWithDeps) {
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("n", "o"));
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("o", "p"));
|
|
checkPostCondition("o", "p", false);
|
|
}
|
|
|
|
namespace {
|
|
Node* insertIf(
|
|
Graph& g,
|
|
Value* condValue,
|
|
std::function<std::vector<Value*>()> trueInst,
|
|
std::function<std::vector<Value*>()> falseInst) {
|
|
auto if_ = g.insertNode(g.create(prim::If, 0));
|
|
if_->addInput(condValue); // condition value
|
|
auto trueBlock = if_->addBlock();
|
|
auto falseBlock = if_->addBlock();
|
|
{
|
|
// Mutate in true block
|
|
WithInsertPoint g(trueBlock);
|
|
auto outputs = trueInst();
|
|
for (auto output : outputs) {
|
|
trueBlock->registerOutput(output);
|
|
}
|
|
}
|
|
{
|
|
WithInsertPoint g(falseBlock);
|
|
auto outputs = falseInst();
|
|
for (auto output : outputs) {
|
|
falseBlock->registerOutput(output);
|
|
}
|
|
}
|
|
|
|
EXPECT_TRUE(trueBlock->outputs().size() == falseBlock->outputs().size());
|
|
for (auto output : trueBlock->outputs()) {
|
|
if_->addOutput()->setType(output->type());
|
|
}
|
|
return if_;
|
|
}
|
|
|
|
template <class Exception, class Functor>
|
|
inline void expectThrows(Functor&& functor, const char* expectMessageContains) {
|
|
try {
|
|
std::forward<Functor>(functor)();
|
|
} catch (const Exception& e) {
|
|
if (std::string(e.what()).find(expectMessageContains) ==
|
|
std::string::npos) {
|
|
TORCH_CHECK(
|
|
false,
|
|
"Expected error message to contain \"",
|
|
expectMessageContains,
|
|
"\" but error message was: ",
|
|
e.what());
|
|
}
|
|
return;
|
|
}
|
|
TORCH_CHECK(
|
|
false,
|
|
"Expected to throw exception containing \"",
|
|
expectMessageContains,
|
|
"\" but didn't throw");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
// addsB = b + b
|
|
// c = a + b
|
|
// a += b
|
|
// d = c + c
|
|
auto addsB = graph->insert(aten::add, {b, b});
|
|
auto c = graph->insert(aten::add, {a, b});
|
|
auto aMut = graph->insert(aten::add_, {a, b});
|
|
auto d = graph->insert(aten::add, {c, c});
|
|
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
// Can't move past a mutation of a used value
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(c->node(), aMut->node()));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(d->node(), c->node()));
|
|
|
|
// b should alias to a (since they are both inputs)
|
|
EXPECT_FALSE(
|
|
aliasDb.moveAfterTopologicallyValid(addsB->node(), aMut->node()));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(addsB->node(), c->node()));
|
|
|
|
graph->lint();
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves2) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
auto constant = graph->insertConstant(1);
|
|
auto fresh = graph->insert(aten::rand, {constant});
|
|
auto usesB = graph->insert(aten::add, {b, fresh});
|
|
auto aliasesB = graph->insert(aten::select, {a, constant, constant});
|
|
auto mutatesAliasOfB = graph->insert(aten::add_, {aliasesB, fresh});
|
|
graph->insert(aten::add, {fresh, aliasesB});
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
|
|
aliasesB->node(), mutatesAliasOfB->node()));
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
|
|
usesB->node(), mutatesAliasOfB->node()));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, SideEffectsBlockMoves) {
|
|
// Test moves across side effectful nodes
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto print1 = graph->insertNode(graph->create(prim::Print, {a}, 0));
|
|
WithInsertPoint guard(print1);
|
|
auto print2 = graph->insertNode(graph->create(prim::Print, {a, a}, 0));
|
|
AliasDb aliasDb(graph);
|
|
|
|
// def foo(a):
|
|
// print2(a, a)
|
|
// print1(a)
|
|
|
|
// test moving across each other
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(print1, print2));
|
|
|
|
// test moving where they already are
|
|
EXPECT_TRUE(aliasDb.moveBeforeTopologicallyValid(print2, print1));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(print1, print2));
|
|
|
|
graph->insertNode(graph->create(prim::MakeTestTensor, {}, 1));
|
|
AliasDb aliasDb2(graph);
|
|
|
|
// def foo(a):
|
|
// print2(a, a)
|
|
// non_side_effectful = makeTestTensor()
|
|
// print1(a)
|
|
|
|
// test moving with a side effectful node between
|
|
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print1, print2));
|
|
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print1, print2));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, MovingAcrossInnerBlocks) {
|
|
// Test moves across inner blocks
|
|
|
|
// a = rand(1)
|
|
// b = rand(1)
|
|
// if True:
|
|
// a.add_(b)
|
|
// c = a + b
|
|
auto graph = std::make_shared<Graph>();
|
|
auto constant = graph->insertConstant(1);
|
|
auto a = graph->insert(aten::rand, {constant});
|
|
auto b = graph->insert(aten::rand, {constant});
|
|
|
|
auto if_ = insertIf(
|
|
*graph,
|
|
constant,
|
|
[&]() -> std::vector<Value*> {
|
|
auto aMut = graph->insert(aten::add_, {a, b});
|
|
return {aMut};
|
|
},
|
|
[&]() -> std::vector<Value*> { return {a}; });
|
|
|
|
auto c = graph->insert(aten::add, {a, b});
|
|
|
|
graph->lint();
|
|
|
|
// we should not be able to move `c` before the if statement, since it
|
|
// may write to `a`.
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(c->node(), if_));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, NoneHasNoWriters) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%opt : Tensor? = prim::Constant()
|
|
%out : Tensor = prim::unchecked_unwrap_optional(%opt)
|
|
%ret.2 : Tensor = aten::div(%out, %out, %out)
|
|
return (%opt, %out, %ret.2)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.hasWriters(vmap["opt"]->node()));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, SafeToChangeAliasingRelationship) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x : Tensor):
|
|
%3 : int = prim::Constant[value=1]()
|
|
%2 : int = prim::Constant[value=0]()
|
|
%b : Tensor = aten::add(%x, %2, %3)
|
|
%c : Tensor = aten::add(%x, %2, %3)
|
|
%d : Tensor = aten::add(%x, %2, %3)
|
|
%e : Tensor = aten::add(%x, %2, %3)
|
|
%f : Tensor[] = prim::ListConstruct(%e)
|
|
%14 : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
|
|
return (%14)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
// x, b, c escape scope, so we can't introduce an aliasing relationship
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["b"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["x"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["c"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["b"]));
|
|
|
|
// e aliases the wildcard set because it's contained in a list
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["e"], vmap["x"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["e"]));
|
|
|
|
// d is a temporary with no writers, safe to change aliasing relationship
|
|
// here
|
|
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["d"]));
|
|
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["d"], vmap["c"]));
|
|
}
|
|
|
|
class BatchAndInstanceNormFixture
|
|
: public ::testing::TestWithParam<std::tuple<std::string, NodeKind, bool>> {
|
|
};
|
|
|
|
TEST_P(BatchAndInstanceNormFixture, BatchAndInstanceNorm) {
|
|
auto param = GetParam();
|
|
auto fnName = std::get<0>(param);
|
|
auto nodeKind = std::get<1>(param);
|
|
auto isTraining = std::get<2>(param);
|
|
std::string isTrainingStr = std::to_string((int)isTraining);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
parseIR(
|
|
R"IR(
|
|
graph(%input : Tensor, %running_mean : Tensor, %running_var : Tensor):
|
|
%none : NoneType = prim::Constant()
|
|
%training : bool = prim::Constant[value=)IR" +
|
|
isTrainingStr + R"IR(]()
|
|
%momentum : float = prim::Constant[value=1.0]()
|
|
%eps : float = prim::Constant[value=1.0e-9]()
|
|
%cudnn_enabled : bool = prim::Constant[value=0]()
|
|
%res : Tensor = )IR" +
|
|
fnName +
|
|
R"IR((%input, %none, %none, %running_mean, %running_var, %training, %momentum, %eps, %cudnn_enabled)
|
|
return (%res)
|
|
)IR",
|
|
&*graph);
|
|
|
|
graph->lint();
|
|
DepthFirstGraphNodeIterator it(graph);
|
|
|
|
Node* n = nullptr;
|
|
while ((n = it.next()) != nullptr) {
|
|
if (n->kind() == nodeKind) {
|
|
break;
|
|
}
|
|
}
|
|
EXPECT_TRUE(n != nullptr);
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.hasWriters(n) == isTraining);
|
|
}
|
|
|
|
TEST_P(BatchAndInstanceNormFixture, BatchAndInstanceNormTrainingUnknown) {
|
|
auto param = GetParam();
|
|
auto fnName = std::get<0>(param);
|
|
auto nodeKind = std::get<1>(param);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
parseIR(
|
|
R"IR(
|
|
graph(%input : Tensor, %running_mean : Tensor, %running_var : Tensor, %training : bool):
|
|
%none : NoneType = prim::Constant()
|
|
%momentum : float = prim::Constant[value=1.0]()
|
|
%eps : float = prim::Constant[value=1.0e-9]()
|
|
%cudnn_enabled : bool = prim::Constant[value=0]()
|
|
%res : Tensor = )IR" +
|
|
fnName +
|
|
R"IR((%input, %none, %none, %running_mean, %running_var, %training, %momentum, %eps, %cudnn_enabled)
|
|
return (%res)
|
|
)IR",
|
|
&*graph);
|
|
|
|
graph->lint();
|
|
DepthFirstGraphNodeIterator it(graph);
|
|
|
|
Node* n = nullptr;
|
|
while ((n = it.next()) != nullptr) {
|
|
if (n->kind() == nodeKind) {
|
|
break;
|
|
}
|
|
}
|
|
EXPECT_TRUE(n != nullptr);
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.hasWriters(n));
|
|
}
|
|
|
|
TEST_P(BatchAndInstanceNormFixture, BatchNormTrainingWithNoMeanOrVar) {
|
|
auto param = GetParam();
|
|
auto fnName = std::get<0>(param);
|
|
auto nodeKind = std::get<1>(param);
|
|
auto isTraining = std::get<2>(param);
|
|
std::string isTrainingStr = std::to_string((int)isTraining);
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
parseIR(
|
|
R"IR(
|
|
graph(%input : Tensor):
|
|
%none : NoneType = prim::Constant()
|
|
%training : bool = prim::Constant[value=)IR" +
|
|
isTrainingStr + R"IR(]()
|
|
%momentum : float = prim::Constant[value=1.0]()
|
|
%eps : float = prim::Constant[value=1.0e-9]()
|
|
%cudnn_enabled : bool = prim::Constant[value=0]()
|
|
%res : Tensor = )IR" +
|
|
fnName +
|
|
R"IR((%input, %none, %none, %none, %none, %training, %momentum, %eps, %cudnn_enabled)
|
|
return (%res)
|
|
)IR",
|
|
&*graph);
|
|
|
|
graph->lint();
|
|
DepthFirstGraphNodeIterator it(graph);
|
|
|
|
Node* n = nullptr;
|
|
while ((n = it.next()) != nullptr) {
|
|
if (n->kind() == nodeKind) {
|
|
break;
|
|
}
|
|
}
|
|
EXPECT_TRUE(n != nullptr);
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.hasWriters(n));
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
AliasAnalysisTest,
|
|
BatchAndInstanceNormFixture,
|
|
::testing::Values(
|
|
std::make_tuple("aten::batch_norm", aten::batch_norm, false),
|
|
std::make_tuple("aten::instance_norm", aten::instance_norm, false),
|
|
std::make_tuple("aten::batch_norm", aten::batch_norm, true),
|
|
std::make_tuple("aten::instance_norm", aten::instance_norm, true)));
|
|
|
|
TEST(WriteTrackingTest, Basic) {
|
|
RegisterOperators reg({Operator(
|
|
"prim::creates_alias(Tensor(a) x) -> Tensor(a)",
|
|
[](Stack&) {},
|
|
aliasAnalysisFromSchema())});
|
|
const auto creates_alias = Symbol::fromQualString("prim::creates_alias");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
// aten::add(%b, %b)
|
|
// aten::add_(%a, %b)
|
|
// foo::creates_alias(%a)
|
|
auto pureNode = graph->insert(aten::add, {b, b})->node();
|
|
auto writingNode = graph->insert(aten::add_, {a, b})->node();
|
|
auto node3 = graph->insert(creates_alias, {a})->node();
|
|
auto aAlias = node3->output();
|
|
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(aAlias, a));
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
EXPECT_FALSE(
|
|
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{a}));
|
|
EXPECT_FALSE(
|
|
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{b}));
|
|
EXPECT_TRUE(
|
|
aliasDb.writesToAlias(writingNode, std::unordered_set<const Value*>{a}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
writingNode, std::unordered_set<const Value*>{a, b}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
writingNode, std::unordered_set<const Value*>{aAlias}));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, IsMutable) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor):
|
|
%b : Tensor = aten::relu_(%x)
|
|
return (%b)
|
|
)IR",
|
|
&*graph);
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto relu = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.isMutable(relu));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, IsImmutable) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y : Tensor):
|
|
%b : Tensor = aten::mul(%x, %y)
|
|
return (%b)
|
|
)IR",
|
|
&*graph);
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto mul = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.isMutable(mul));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, HasWriters) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y : Tensor):
|
|
%c1 : int = prim::Constant[value=1]()
|
|
%b : Tensor = aten::add_(%x, %y, %c1)
|
|
return (%b)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
auto add = vmap["b"]->node();
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.hasWriters(add));
|
|
EXPECT_TRUE(aliasDb.isMutable(add));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MayContainAlias) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%inp: Tensor[]):
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : Tensor = prim::Constant()
|
|
%z : Tensor = prim::Constant()
|
|
%a : (Tensor) = prim::TupleConstruct(%y)
|
|
%b : Dict(str, Tensor) = prim::DictConstruct(%x, %y)
|
|
%c : Tensor[] = prim::ListConstruct(%y)
|
|
return (%a, %b, %c)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
auto str_output = vmap["x"];
|
|
auto ten_output = vmap["y"];
|
|
auto local_var = vmap["z"];
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(graph->outputs().size() == 3);
|
|
for (auto out : graph->outputs()) {
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, out));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, out));
|
|
}
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, graph->inputs()));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, graph->inputs()));
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, graph->outputs()));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(
|
|
at::ArrayRef<Value*>{ten_output}, graph->outputs()));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(str_output, graph->outputs()));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MayContainAlias_cast) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%input.1 : Tensor):
|
|
%2 : NoneType = prim::Constant()
|
|
%3 : bool = prim::Constant[value=0]()
|
|
%4 : int = prim::Constant[value=6]()
|
|
%5 : int = prim::Constant[value=1]()
|
|
%a.1 : Tensor = aten::add(%input.1, %input.1, %5)
|
|
%b.1 : Tensor = aten::to(%a.1, %4, %3, %3, %2)
|
|
%c.1 : Tensor = aten::mul(%b.1, %b.1)
|
|
return (%c.1)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
auto a = vmap["a.1"];
|
|
auto b = vmap["b.1"];
|
|
auto c = vmap["c.1"];
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(graph->outputs().size() == 1);
|
|
for (auto out : graph->outputs()) {
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(c, out));
|
|
}
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(a, b));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(b, graph->inputs()));
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(c, graph->outputs()));
|
|
EXPECT_TRUE(
|
|
aliasDb.mayContainAlias(at::ArrayRef<Value*>{c}, graph->outputs()));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(b, graph->outputs()));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, PrimitveValuesDontAliasContainers) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : int = prim::Constant[value=1]()
|
|
%a : (int) = prim::TupleConstruct(%y)
|
|
%b : Dict(str, int) = prim::DictConstruct(%x, %y)
|
|
%c : int[] = prim::ListConstruct(%y)
|
|
return (%a, %b, %c)
|
|
)IR",
|
|
&*graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
node_iter++; // string
|
|
Node* int_node = *node_iter++;
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(graph->outputs().size() == 3);
|
|
// primitive values don't need to alias container
|
|
for (auto out : graph->outputs()) {
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(int_node->output(), out));
|
|
}
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, UnionAliasing) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%a : Dict(str, Tensor),
|
|
%b : Tensor[],
|
|
%c : Union(Dict(str, Tensor), Tensor[])):
|
|
return (%a, %b, %c)
|
|
)IR",
|
|
&*graph);
|
|
|
|
AliasDb aliasDb(graph);
|
|
auto a = graph->outputs().at(0);
|
|
auto b = graph->outputs().at(1);
|
|
auto c = graph->outputs().at(2);
|
|
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, c));
|
|
EXPECT_TRUE(aliasDb.mayAlias(b, c));
|
|
EXPECT_TRUE(aliasDb.mayAlias(c, c));
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(a, b));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(a, c));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(b, c));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, InputsCanAliasOutputs) {
|
|
// Test input aliasing
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y: Tensor):
|
|
%a : (Tensor) = prim::TupleConstruct(%x)
|
|
return (%a)
|
|
)IR",
|
|
&*graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto tuple_node = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
|
|
for (auto input : graph->inputs()) {
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(input, tuple_node->output()));
|
|
}
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(graph->inputs(), graph->outputs()));
|
|
}
|
|
|
|
// Test tuple that doesn't come from construct
|
|
TEST(ContainerAliasingTest, NestedTupleConstruct) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x : int,
|
|
%y : Tensor,
|
|
%z : Tensor):
|
|
%3 : int = prim::Constant[value=1]()
|
|
%4 : bool = aten::eq(%x, %3)
|
|
%a : (Tensor) = prim::If(%4)
|
|
block0():
|
|
%a.1 : (Tensor) = prim::TupleConstruct(%y)
|
|
-> (%a.1)
|
|
block1():
|
|
%a.2 : (Tensor) = prim::TupleConstruct(%z)
|
|
-> (%a.2)
|
|
return (%a)
|
|
)IR",
|
|
&*graph);
|
|
|
|
AliasDb aliasDb(graph);
|
|
|
|
for (auto input : graph->inputs()) {
|
|
if (input->type() == IntType::get()) {
|
|
continue;
|
|
}
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(input, graph->outputs().at(0)));
|
|
}
|
|
}
|
|
|
|
// test nested types
|
|
TEST(ContainerAliasingTest, NestedTypes) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%a : Tensor = prim::MakeTestTensor()
|
|
%a_list : Tensor[] = prim::ListConstruct(%a)
|
|
%b : Tensor = prim::MakeTestTensor()
|
|
%b_list : Tensor[] = prim::ListConstruct(%b)
|
|
%13 : (Tensor[], Tensor[]) = prim::TupleConstruct(%a_list, %b_list)
|
|
return (%13)
|
|
)IR",
|
|
&*graph);
|
|
AliasDb aliasDb(graph);
|
|
auto g_output = graph->outputs().at(0);
|
|
auto list_2 = g_output->node()->inputs().at(0);
|
|
auto list_1 = g_output->node()->inputs().at(1);
|
|
|
|
// TODO FIX assume conservatively for now
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, list_2));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, list_1));
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, g_output));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, g_output));
|
|
}
|
|
|
|
// simple example
|
|
TEST(ContainerAliasingTest, Simple) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : Tensor = prim::Constant()
|
|
%1 : Tensor = prim::Constant()
|
|
%13 : (Tensor) = prim::TupleConstruct(%0)
|
|
return (%13)
|
|
)IR",
|
|
&*graph);
|
|
AliasDb aliasDb(graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto first_ten = *node_iter++;
|
|
auto second_ten = *node_iter++;
|
|
auto tup_node = *node_iter;
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(first_ten->output(), tup_node->output()));
|
|
EXPECT_TRUE(
|
|
!aliasDb.mayContainAlias(second_ten->output(), tup_node->output()));
|
|
|
|
std::vector<Value*> first_st = {first_ten->output()};
|
|
std::vector<Value*> second_st = {second_ten->output()};
|
|
std::vector<Value*> tup_st = {tup_node->output()};
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(first_st, tup_st));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(first_st, second_st));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(second_st, tup_st));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Lists) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : Tensor = prim::Constant()
|
|
%c : Tensor[] = prim::ListConstruct(%y)
|
|
%d : Tensor[] = prim::ListConstruct(%y)
|
|
return (%c, %d)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
auto x = vmap["x"];
|
|
auto c = vmap["c"];
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(x, c));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(c, x));
|
|
|
|
auto d = vmap["d"];
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(d, c));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(c, d));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Lists2) {
|
|
// Test list container aliasing
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%y : Tensor = prim::MakeTestTensor()
|
|
%22 : int[] = prim::ListConstruct(%0, %1)
|
|
%z : Tensor = prim::MakeTestTensor()
|
|
%32 : int[] = prim::ListConstruct(%0, %1)
|
|
%fresh : Tensor = prim::MakeTestTensor()
|
|
%foo : Tensor[] = prim::ListConstruct(%x, %y)
|
|
%43 : Tensor[] = aten::append(%foo, %z)
|
|
return ()
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto x = vmap["x"];
|
|
auto y = vmap["y"];
|
|
auto z = vmap["z"];
|
|
// Tensors x, y, and z went into a list, so they all may alias each other.
|
|
EXPECT_TRUE(aliasDb.mayAlias(x, y));
|
|
EXPECT_TRUE(aliasDb.mayAlias(y, z));
|
|
EXPECT_TRUE(aliasDb.mayAlias(x, z));
|
|
|
|
// But we know `fresh` didn't go into a list, so x, y, and z should not
|
|
// alias it.
|
|
auto fresh = vmap["fresh"];
|
|
EXPECT_FALSE(aliasDb.mayAlias(x, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(y, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(z, fresh));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Conservative) {
|
|
// test "conservative" analysis writes to the inside of a container.
|
|
auto ops = torch::RegisterOperators(
|
|
"custom::conservative", [](torch::List<at::Tensor> in) { return in; });
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : Tensor[] = prim::ListConstruct(%11)
|
|
%out : Tensor[] = custom::conservative(%12)
|
|
%ret.2 : Tensor = aten::div(%11, %11)
|
|
return ()
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto conservativeOp = vmap["out"]->node();
|
|
auto tensor = vmap["11"];
|
|
EXPECT_TRUE(aliasDb.writesToAlias(conservativeOp, ValueSet{tensor}));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MovesAcrossContainedWrites) {
|
|
auto ops = torch::RegisterOperators().op(
|
|
"uses::list",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](torch::List<at::Tensor> in) { return torch::rand({2, 3}); })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
// Write to the inside of a list. Check that we can't reorder a
|
|
// print across it.
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%35 : int = prim::Constant[value=1]()
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%23 : int = prim::Constant[value=0]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%21 : Tensor = prim::MakeTestTensor()
|
|
%l : Tensor[] = prim::ListConstruct(%11, %21)
|
|
%24 : Tensor = aten::select(%l, %23)
|
|
%25 : int[] = prim::ListConstruct(%0, %1)
|
|
%34 : Tensor = prim::MakeTestTensor()
|
|
%36 : Tensor = aten::add_(%24, %34, %35)
|
|
%37 : Tensor = uses::list(%l)
|
|
return (%37)
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto listUse = vmap["37"]->node();
|
|
auto internalWrite = vmap["36"]->node();
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MovesAcrossContainedWritesNested) {
|
|
// The same as above, but with a nested list
|
|
auto ops = torch::RegisterOperators().op(
|
|
"uses::list",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](torch::List<at::Tensor> in) { return torch::rand({2, 3}); })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
// Write to the inside of a list. Check that we can't reorder a
|
|
// print across it.
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%38 : int = prim::Constant[value=1]()
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%24 : int = prim::Constant[value=0]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%21 : Tensor = prim::MakeTestTensor()
|
|
%l : Tensor[] = prim::ListConstruct(%11, %21)
|
|
%25 : Tensor = aten::select(%l, %24)
|
|
%27 : Tensor = aten::select(%25, %24, %24)
|
|
%28 : int[] = prim::ListConstruct(%0, %1)
|
|
%37 : Tensor = prim::MakeTestTensor()
|
|
%39 : Tensor = aten::add_(%27, %37, %38)
|
|
%40 : Tensor = uses::list(%l)
|
|
return (%40)
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto listUse = vmap["40"]->node();
|
|
auto internalWrite = vmap["39"]->node();
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
|
|
}
|
|
|
|
TEST(WildcardsTest, Basic) {
|
|
RegisterOperators reg(
|
|
{Operator(
|
|
"prim::returns_wildcard(Tensor a) -> Tensor(*)",
|
|
[](Stack&) {},
|
|
aliasAnalysisFromSchema()),
|
|
Operator(
|
|
"prim::writes(Tensor(z!) a) -> Tensor(a)",
|
|
[](Stack&) {},
|
|
aliasAnalysisFromSchema())});
|
|
const auto returns_wildcard =
|
|
Symbol::fromQualString("prim::returns_wildcard");
|
|
const auto writes = Symbol::fromQualString("prim::writes");
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
const auto a = graph->addInput();
|
|
|
|
const auto constant = graph->insertConstant(1);
|
|
const auto fresh = graph->insert(aten::rand, {constant});
|
|
const auto fresh2 = graph->insert(aten::rand, {constant});
|
|
const auto wildcard = graph->insert(returns_wildcard, {fresh});
|
|
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(wildcard, fresh));
|
|
EXPECT_TRUE(aliasDb.mayAlias(wildcard, a));
|
|
EXPECT_FALSE(aliasDb.mayAlias(ValueSet{wildcard}, ValueSet{}));
|
|
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
|
|
graph->insert(writes, {fresh2})->node();
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
|
|
const auto wildcardWrite = graph->insert(writes, {wildcard})->node();
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
// Test writes to wildcards
|
|
EXPECT_FALSE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{fresh}));
|
|
EXPECT_FALSE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{fresh2}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{a}));
|
|
EXPECT_TRUE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
}
|
|
|
|
// test that wildcards are correctly divided by type
|
|
TEST(WildcardsTest, TypeIsolation) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%ten_list : Tensor[], %int_list : int[], %opt_ten_list : Tensor[]?):
|
|
%ten : Tensor = prim::Constant()
|
|
%4 : Tensor[] = aten::append(%ten_list, %ten)
|
|
%ten_ten_list : Tensor[][] = prim::Constant()
|
|
%int_int_list : int[][] = prim::Constant()
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto opt_ten_list = vmap["opt_ten_list"];
|
|
auto ten_list = vmap["ten_list"];
|
|
auto int_list = vmap["int_list"];
|
|
EXPECT_FALSE(aliasDb.hasWriters(int_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(int_list, opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.mayAlias(ten_list, opt_ten_list));
|
|
|
|
auto list_of_tensor_lists = vmap["ten_ten_list"];
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, list_of_tensor_lists));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, vmap["ten"]));
|
|
|
|
EXPECT_TRUE(
|
|
!aliasDb.mayContainAlias(vmap["int_int_list"], list_of_tensor_lists));
|
|
}
|
|
|
|
// test invariant container aliasing
|
|
// the containers of different type cannot alias each other,
|
|
// however they may contain elements which alias each other
|
|
TEST(WildcardsTest, InvariantContainerAliasing) {
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%ten_list : Tensor[], %ten_opt_list : Tensor?[]):
|
|
%ten : Tensor = prim::Constant()
|
|
%4 : Tensor[] = aten::append(%ten_list, %ten)
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto ten_opt_list = vmap["ten_opt_list"];
|
|
auto ten_list = vmap["ten_list"];
|
|
EXPECT_FALSE(aliasDb.hasWriters(ten_opt_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, ten_opt_list));
|
|
EXPECT_FALSE(aliasDb.mayAlias(ten_list, ten_opt_list));
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%float_3D : Float(*, *, *), %float_2D : Float(*, *)):
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D"], vmap["float_2D"]));
|
|
}
|
|
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%float_3D_list : Float(*, *, *)[], %float_2D_list : Float(*, *)[], %ten: Tensor):
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D_list"], vmap["float_2D_list"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_3D_list"], vmap["ten"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_2D_list"], vmap["ten"]));
|
|
}
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithInferredSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand1",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand1");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// Conservatively we assume there is a reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithSpecifiedSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand2(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand2");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// Conservatively we assume there is a reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand3(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
|
|
const auto rand_op = Symbol::fromQualString("foo::rand3");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand3(Tensor(a) arg1) -> Tensor(b) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError2) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand4(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand4");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand4(Tensor(a) arg1) -> Tensor(a) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaWithInferredSchemaShouldError) {
|
|
expectThrows<c10::Error>(
|
|
[] {
|
|
torch::RegisterOperators().op(
|
|
"foo::rand5",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
},
|
|
"Tried to register operator foo::rand5(Tensor _0) -> Tensor _0 with AliasAnalysisKind::FROM_SCHEMA, but the schema is inferred");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaInferredPure) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand6(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand6");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema doesn't contain alias information, which means it's pure
|
|
// (meh!)
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaAliased) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand7(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand7");
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema has an alias reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaPure) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand8(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand8");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema does not have an alias reference
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureNoSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand9",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand9");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema is pure, there cannot be any alias
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand10(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel(
|
|
[](at::Tensor) -> at::Tensor { return at::rand({2, 2}); })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand10");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema is pure, there cannot be any alias
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand11(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand11");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand11(Tensor(a) arg1) -> Tensor(a) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, AliasMoveAtenListOp) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%8 : int = prim::Constant[value=0]()
|
|
%5 : int = prim::Constant[value=1]()
|
|
%4 : int = prim::Constant[value=2]()
|
|
%y : Tensor[] = prim::ListConstruct(%x)
|
|
%6 : Tensor = aten::add_(%x, %4, %5)
|
|
%9 : Tensor = aten::cat(%y, %8)
|
|
return (%9))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph);
|
|
|
|
// bc y.1 has a single used in a single non-aliasing aten op,
|
|
// x is added to y.1 contained elements instead of wildcard set
|
|
EXPECT_TRUE(!aliasDb.mayAlias(vmap["x"], vmap["9"]));
|
|
|
|
// write to contained element should prevent move
|
|
EXPECT_TRUE(!aliasDb.moveBeforeTopologicallyValid(
|
|
vmap["y"]->node(), vmap["9"]->node()));
|
|
}
|
|
|
|
TEST(
|
|
AliasRegistrationTest,
|
|
AliasMoveForTupleConstructWithSingleUseAsGraphOutput) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%y : Tensor = prim::MakeTestTensor()
|
|
%z : (Tensor) = prim::TupleConstruct(%x, %y)
|
|
return (%z))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph, /*isFrozen=*/false);
|
|
|
|
EXPECT_TRUE(!aliasDb.mayAlias(vmap["x"], vmap["y"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["z"], vmap["x"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["z"], vmap["y"]));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, RecursiveSubgraphTupleContainment) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%y : Tensor = prim::MakeTestTensor()
|
|
%z : (Tensor, Tensor) = prim::TupleConstruct(%x, %y)
|
|
return (%z))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
auto node = vmap["z"]->node();
|
|
auto subgraph =
|
|
SubgraphUtils::createSingletonSubgraph(node, prim::FunctionalGraph);
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(subgraph->output(), vmap["x"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(subgraph->output(), vmap["y"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["x"], vmap["y"]));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, WildcardAliasForTupleConstructWithUses) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%y : Tensor = prim::MakeTestTensor()
|
|
%z : Tensor = prim::MakeTestTensor()
|
|
%0 : int = prim::Constant[value=0]()
|
|
%a : (Tensor) = prim::TupleConstruct(%x, %y)
|
|
%b : (Tensor) = prim::TupleConstruct(%z)
|
|
%c : Tensor = prim::TupleIndex(%a, %0)
|
|
%d : Tensor = prim::TupleIndex(%b, %0)
|
|
return (%c, %d))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph, /*isFrozen=*/false);
|
|
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["x"], vmap["y"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["x"], vmap["z"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["z"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["a"], vmap["x"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["a"], vmap["y"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["a"], vmap["z"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["b"], vmap["x"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["b"], vmap["y"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["b"], vmap["z"]));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ATenSplitIntListAliasCheck) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%0 : int = prim::Constant[value=0]()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%2 : int = prim::Constant[value=2]()
|
|
%y : Tensor = aten::add(%x, %x, %0)
|
|
%lengths_list : int[] = prim::tolist(%1, %2)
|
|
%a : Tensor[] = aten::split(%y, %lengths_list, %0)
|
|
%b : Tensor, %c : Tensor = prim::ListUnpack(%a)
|
|
%b1 : Tensor = aten::flatten(%b, %0, %1)
|
|
%c1 : Tensor = aten::flatten(%c, %0, %1)
|
|
%d : Tensor = aten::add(%b1, %c1, %0)
|
|
return (%d))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph, /*isFrozen=*/false);
|
|
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["b"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["c"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["b1"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["c1"]));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ATenSplitIntAliasCheck) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%0 : int = prim::Constant[value=0]()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%2 : int = prim::Constant[value=2]()
|
|
%y : Tensor = aten::add(%x, %x, %0)
|
|
%a : Tensor[] = aten::split(%y, %2, %0)
|
|
%b : Tensor, %c : Tensor = prim::ListUnpack(%a)
|
|
%b1 : Tensor = aten::flatten(%b, %0, %1)
|
|
%c1 : Tensor = aten::flatten(%c, %0, %1)
|
|
%d : Tensor = aten::add(%b1, %c1, %0)
|
|
return (%d))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph, /*isFrozen=*/false);
|
|
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["b"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["c"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["b1"]));
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["y"], vmap["c1"]));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError2) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand12(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand12");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand12(Tensor(a) arg1) -> Tensor(b) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(IRNonDeterminismTest, Basic) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%0 : int = prim::Constant[value=0]()
|
|
%1 : NoneType = prim::Constant()
|
|
%2 : Tensor = aten::bernoulli(%x, %1)
|
|
%3 : Tensor = aten::add(%x, %2, %0)
|
|
return (%3))IR";
|
|
parseIR(graph_string, graph.get());
|
|
|
|
for (Node* n : graph->nodes()) {
|
|
if (n->kind() == aten::bernoulli) {
|
|
ASSERT_TRUE(n->isNondeterministic());
|
|
} else {
|
|
ASSERT_FALSE(n->isNondeterministic());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(IRNonDeterminismTest, DropoutSpecialCase) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%0 : bool = prim::Constant[value=0]()
|
|
%1 : bool = prim::Constant[value=1]()
|
|
%3 : int = prim::Constant[value=1]()
|
|
%3 : float = prim::Constant[value=1.0]()
|
|
%4 : Tensor = aten::dropout(%x, %3, %0)
|
|
%5 : Tensor = aten::dropout(%x, %3, %1)
|
|
%6 : Tensor = aten::add(%4, %5, %3)
|
|
return (%6))IR";
|
|
parseIR(graph_string, graph.get());
|
|
|
|
bool train = false;
|
|
for (Node* n : graph->nodes()) {
|
|
if (n->kind() == aten::dropout) {
|
|
if (!train) {
|
|
ASSERT_FALSE(n->isNondeterministic());
|
|
train = true;
|
|
} else {
|
|
ASSERT_TRUE(n->isNondeterministic());
|
|
}
|
|
} else {
|
|
ASSERT_FALSE(n->isNondeterministic());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(NonDeterminismBackwardsCompatibility, BackwardsCompatibility) {
|
|
static const std::vector<std::string> nondeterministic_ops = {
|
|
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
|
|
"aten::_fused_dropout(Tensor self, float p, Generator? generator) -> (Tensor, Tensor)",
|
|
"aten::_standard_gamma(Tensor self, Generator? generator) -> Tensor",
|
|
"aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor",
|
|
"aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor",
|
|
"aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator? generator) -> Tensor",
|
|
"aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)",
|
|
"aten::normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator) -> Tensor",
|
|
"aten::normal.float_Tensor(float mean, Tensor std, *, Generator? generator) -> Tensor",
|
|
"aten::normal.Tensor_float(Tensor mean, float std, *, Generator? generator) -> Tensor",
|
|
"aten::poisson(Tensor self, Generator? generator) -> Tensor",
|
|
"aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor",
|
|
"aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
|
|
"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
|
|
"aten::rand(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
|
|
"aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
|
|
"aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
|
|
"aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
|
|
"aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
|
|
"aten::randint_like(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
|
|
"aten::randn(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
|
|
"aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
|
|
"aten::randperm(int n, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor"};
|
|
for (const std::string& op : nondeterministic_ops) {
|
|
const c10::FunctionSchema& schema = torch::jit::parseSchema(op);
|
|
const auto& op_handle = c10::Dispatcher::singleton().findOp(
|
|
c10::OperatorName(schema.name(), schema.overload_name()));
|
|
ASSERT_TRUE(op_handle->hasTag(at::Tag::nondeterministic_seeded));
|
|
}
|
|
}
|
|
|
|
TEST(TypeHashing, HashTypes) {
|
|
HashType hasher;
|
|
|
|
const TypePtr int_type = IntType::get();
|
|
const TypePtr float_type = FloatType::get();
|
|
ASSERT_NE(hasher(int_type), hasher(float_type));
|
|
|
|
const TypePtr int2_type = TupleType::create({int_type, int_type});
|
|
const TypePtr int3_type = TupleType::create({int_type, int_type, int_type});
|
|
ASSERT_NE(hasher(int2_type), hasher(int3_type));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|