Files
pytorch/test/cpp/jit/test_class_import.cpp
Zachary DeVito 0e3389dced Fix circular deps in loading (#26758)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26758

This PR changes the order in which we import classes and functions so
that is is no longer necessary for them to defined in order in a file,
or for there to be proper import statements in the exported file.

Actually importing a function/class now is driven by the need to resolve
the entity during unpickling, type resolution, or value resolution.

While this should allow significant simplification to the code that
serializes classes, this work has not been done yet in order to avoid
inevitable forward compat issues in the transition period.

Notes:
* Individual functions have been replaced with a SourceImporter object
  that exposes a resolveType method. This method loads the type if
  it has not been loaded yet, potentially parsing  (but not loading)
  the file it exists in if that file hasn't been parsed yet.
* Some legacy functionality needed to be added as a method to this object
  since the old format still used some of this logic for class resolution.

Test Plan: Imported from OSS

Differential Revision: D17558989

Pulled By: zdevito

fbshipit-source-id: 7eae3470bcbd388c4de463e3462d527776ed46c6
2019-09-26 11:39:16 -07:00

144 lines
4.2 KiB
C++

#include <test/cpp/jit/test_base.h>
#include <test/cpp/jit/test_utils.h>
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/import_source.h>
#include <torch/csrc/jit/script/resolver.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
using namespace torch::jit::script;
static const auto classSrcs1 = R"JIT(
op_version_set = 1
class FooNestedTest:
def __init__(self, y):
self.y = y
class FooNestedTest2:
def __init__(self, y):
self.y = y
self.nested = __torch__.FooNestedTest(y)
class FooTest:
def __init__(self, x):
self.class_attr = __torch__.FooNestedTest(x)
self.class_attr2 = __torch__.FooNestedTest2(x)
self.x = self.class_attr.y + self.class_attr2.y
)JIT";
static const auto classSrcs2 = R"JIT(
op_version_set = 1
class FooTest:
def __init__(self, x):
self.dx = x
)JIT";
static void import_libs(
std::shared_ptr<CompilationUnit> cu,
const std::string& class_name,
const std::shared_ptr<Source>& src,
const std::vector<at::Tensor>& tensor_table) {
SourceImporter si(
cu,
&tensor_table,
[&](const std::string& name) -> std::shared_ptr<Source> {
return src;
});
si.loadNamedType(QualifiedName(class_name));
}
void testClassImport() {
auto cu1 = std::make_shared<CompilationUnit>();
auto cu2 = std::make_shared<CompilationUnit>();
std::vector<at::Tensor> constantTable;
// Import different versions of FooTest into two namespaces.
import_libs(
cu1,
"__torch__.FooTest",
std::make_shared<Source>(classSrcs1),
constantTable);
import_libs(
cu2,
"__torch__.FooTest",
std::make_shared<Source>(classSrcs2),
constantTable);
// We should get the correct version of `FooTest` for whichever namespace we
// are referencing
c10::QualifiedName base("__torch__");
auto classType1 = cu1->get_class(c10::QualifiedName(base, "FooTest"));
ASSERT_TRUE(classType1->hasAttribute("x"));
ASSERT_FALSE(classType1->hasAttribute("dx"));
auto classType2 = cu2->get_class(c10::QualifiedName(base, "FooTest"));
ASSERT_TRUE(classType2->hasAttribute("dx"));
ASSERT_FALSE(classType2->hasAttribute("x"));
// We should only see FooNestedTest in the first namespace
auto c = cu1->get_class(c10::QualifiedName(base, "FooNestedTest"));
ASSERT_TRUE(c);
c = cu2->get_class(c10::QualifiedName(base, "FooNestedTest"));
ASSERT_FALSE(c);
}
void testScriptObject() {
Module m1("m1");
Module m2("m2");
std::vector<at::Tensor> constantTable;
import_libs(
m1.class_compilation_unit(),
"__torch__.FooTest",
std::make_shared<Source>(classSrcs1),
constantTable);
import_libs(
m2.class_compilation_unit(),
"__torch__.FooTest",
std::make_shared<Source>(classSrcs2),
constantTable);
// Incorrect arguments for constructor should throw
c10::QualifiedName base("__torch__");
ASSERT_ANY_THROW(m1.create_class(c10::QualifiedName(base, "FooTest"), {1}));
auto x = torch::ones({2, 3});
auto obj = m2.create_class(c10::QualifiedName(base, "FooTest"), x).toObject();
auto dx = obj->getAttr("dx");
ASSERT_TRUE(almostEqual(x, dx.toTensor()));
auto new_x = torch::rand({2, 3});
obj->setAttr("dx", new_x);
auto new_dx = obj->getAttr("dx");
ASSERT_TRUE(almostEqual(new_x, new_dx.toTensor()));
}
static const auto methodSrc = R"JIT(
def __init__(self, x):
return x
)JIT";
void testClassDerive() {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu);
const auto self = SimpleSelf(cls);
auto methods = cu->define("foo.bar", methodSrc, nativeResolver(), &self);
auto method = methods[0];
cls->addAttribute("attr", TensorType::get());
cls->addMethod(method);
ASSERT_TRUE(cls->getMethod(method->name()));
// Refining a new class should retain attributes and methods
auto newCls = cls->refine({TensorType::get()});
ASSERT_TRUE(newCls->hasAttribute("attr"));
ASSERT_TRUE(newCls->getMethod(method->name()));
auto newCls2 = cls->withContained({TensorType::get()})->expect<ClassType>();
ASSERT_TRUE(newCls2->hasAttribute("attr"));
ASSERT_TRUE(newCls2->getMethod(method->name()));
}
} // namespace jit
} // namespace torch