Files
pytorch/torch/_dynamo/symbolic_convert.py
Laith Sakka 0df34492ef WIP Support python slicing with data depedennt inptu tensors maybe
ghstack-source-id: 5363cf5565c2c024260b6ae504ba12ffca2f9984
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165074
2025-10-19 08:41:38 -07:00

5056 lines
199 KiB
Python

"""
Core module responsible for converting Python bytecode into TorchDynamo's symbolic execution format.
This module implements the bytecode-level tracing system that allows TorchDynamo to analyze
and transform Python code. It converts Python bytecode instructions into a symbolic format
that tracks the flow of tensors and other values through the program.
Key components:
- InstructionTranslatorBase: Base class for converting bytecode to symbolic execution
- InstructionTranslator: Main translator for function bytecode
- InliningInstructionTranslator: Handles inlining of called functions
- SpeculationLog: Manages state for speculative execution and rollback
The symbolic conversion process handles:
- Control flow (loops, conditionals, etc.)
- Function inlining and call stack management
- Tracking of program values and side effects
- Graph breaks and resumption points
- Exception handling and stack frame management
This is a core part of TorchDynamo's tracing system that enables ahead-of-time
optimization of PyTorch programs.
"""
from __future__ import annotations
import collections
import collections.abc
import contextlib
import copy
import dataclasses
import dis
import functools
import importlib
import inspect
import itertools
import linecache
import logging
import operator
import re
import sys
import threading
import traceback
import types
import weakref
from collections import deque
from traceback import StackSummary
from typing import Any, Callable, cast, NoReturn, Optional, TYPE_CHECKING, Union
from typing_extensions import TypeAlias, TypeIs
from unittest.mock import patch
import torch
import torch._logging
from torch._dynamo.exc import ObservedException, TensorifyScalarRestartAnalysis
from torch._guards import tracing, TracingContext
from torch._logging.structured import dump_file
from torch.fx.experimental.symbolic_shapes import guard_bool
from torch.utils._functools import cache_method
from . import (
config,
exc,
graph_break_hints,
logging as torchdynamo_logging,
trace_rules,
variables,
)
from .bytecode_analysis import (
get_indexof,
JUMP_OPNAMES,
livevars_analysis,
propagate_line_nums,
)
from .bytecode_transformation import (
cleaned_instructions,
create_binary_slice,
create_call_function,
create_call_function_ex,
create_copy,
create_dup_top,
create_instruction,
create_jump_absolute,
create_load_const,
create_rot_n,
create_swap,
get_code_keys,
Instruction,
is_generator,
is_jump_absolute,
unique_id,
)
from .code_context import code_context
from .codegen import PyCodegen
from .exc import (
ArgsMismatchError,
BackendCompilerFailed,
collapse_resume_frames,
format_graph_break_message,
get_stack_above_dynamo,
ResumePrologueTracingError,
StepUnsupported,
unimplemented_v2,
Unsupported,
)
from .funcname_cache import get_funcname
from .guards import GuardBuilder, install_guard
from .output_graph import GraphCompileReason, OutputGraph, StackLocalsMetadata
from .polyfills import impl_CONTAINS_OP_fallback
from .replay_record import DummyModule, ExecutionRecorder
from .resume_execution import (
ContinueExecutionCache,
IS_TRACING_RESUME_PROLOGUE_VARNAME,
ReenterWith,
)
from .source import (
AttrSource,
DictGetItemSource,
GlobalSource,
GlobalWeakRefSource,
LocalCellSource,
LocalSource,
SkipGuardSource,
Source,
)
from .trace_rules import is_builtin_constant, is_forbidden
from .utils import (
_get_error_on_graph_break,
counters,
get_fake_value,
get_instruction_source_311,
get_metrics_context,
graph_break_dup_warning_checker,
istype,
LazyString,
proxy_args_kwargs,
)
from .variables.base import typestr, ValueMutationNew, VariableTracker
from .variables.builder import FrameStateSizeEntry, VariableBuilder, wrap_fx_proxy
from .variables.builtin import BuiltinVariable
from .variables.constant import ConstantVariable
from .variables.ctx_manager import (
ContextWrappingVariable,
GenericContextWrappingVariable,
WithEnterFunctionVariable,
WithExitFunctionVariable,
)
from .variables.dicts import ConstDictVariable, SetVariable
from .variables.functions import (
BaseUserFunctionVariable,
LocalGeneratorFunctionVariable,
LocalGeneratorObjectVariable,
NestedUserFunctionVariable,
SkipFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
)
from .variables.iter import MAX_ITERATOR_LIMIT
from .variables.lazy import LazyVariableTracker
from .variables.lists import (
BaseListVariable,
IteratorVariable,
ListIteratorVariable,
ListVariable,
SliceVariable,
TupleVariable,
)
from .variables.misc import (
CellVariable,
ExceptionVariable,
GetAttrVariable,
NullVariable,
PythonModuleVariable,
UnknownVariable,
)
from .variables.nn_module import NNModuleVariable, UnspecializedNNModuleVariable
from .variables.tensor import supported_comparison_ops, SymNodeVariable, TensorVariable
from .variables.torch_function import (
SymbolicTorchFunctionState,
TorchFunctionModeVariable,
)
from .variables.user_defined import (
RemovableHandleVariable,
UserDefinedClassVariable,
UserDefinedExceptionClassVariable,
UserDefinedExceptionObjectVariable,
UserDefinedObjectVariable,
)
if TYPE_CHECKING:
from collections.abc import Generator, Sequence
from torch._subclasses.fake_tensor import FakeTensorMode
from .package import CompilePackage
log = logging.getLogger(__name__)
graph_break_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")
trace_source_log = torch._logging.getArtifactLogger(__name__, "trace_source")
trace_bytecode_log = torch._logging.getArtifactLogger(__name__, "trace_bytecode")
tls = threading.local()
compare_op_handlers: dict[str, Any] = {
k: BuiltinVariable(v).call_function for k, v in supported_comparison_ops.items()
}
handle_contains = BuiltinVariable(operator.contains).call_function
handle_not = BuiltinVariable(operator.not_).call_function
compare_op_handlers["in"] = lambda tx, args, _: handle_contains(
tx, [*reversed(args)], {}
)
compare_op_handlers["not in"] = lambda tx, args, _: handle_not(
tx, [handle_contains(tx, [*reversed(args)], {})], {}
)
PT2_ISSUE_TRACKER_URL = "https://github.com/pytorch/pytorch/issues/new?&labels=oncall%3A+pt2&projects=&template=pt2-bug-report.yml"
ExceptionVals: TypeAlias = Union[
variables.ExceptionVariable,
UserDefinedExceptionClassVariable,
UserDefinedExceptionObjectVariable,
]
@functools.cache
def _import_module(name: str) -> types.ModuleType:
"""
Import the named module and cache the result. importlib.import_module()
seems to do some filesystem checking to validate the name so not caching
this can be slow.
"""
return importlib.import_module(name)
@dataclasses.dataclass
class SpeculationEntry:
filename: str
lineno: int
instruction_pointer: int
inst: Instruction # for debugging only
_failed: bool = False
error_on_graph_break: Optional[bool] = None
reason: Optional[GraphCompileReason] = None
def fail_and_restart_analysis(self, error_on_graph_break: bool) -> None:
"""
Start tracing of the current frame over again, and don't take this branch.
"""
self._failed = True
self.error_on_graph_break = error_on_graph_break
if self.reason is not None:
restart_reason = self.reason.reason
else:
restart_reason = "Unknown fail_and_restart_analysis"
raise exc.SpeculationRestartAnalysis(restart_reason=restart_reason)
def failed(self, tx: InstructionTranslatorBase) -> bool:
if self._failed:
assert self.error_on_graph_break is not None
tx.error_on_graph_break = self.error_on_graph_break
return True
return False
@dataclasses.dataclass
class SpeculationLog:
"""
SpeculationLog replaces the prior copy_graphstate/restore_graphstate
checkpointing. Rather than saving/restoring state, we restart the
dynamo conversion process over from the beginning -- but when we
hit the start of the speculation that failed, we instead generate
a graph break.
"""
entries: list[SpeculationEntry] = dataclasses.field(default_factory=list)
index: int = 0
def restart(self) -> None:
self.index = 0
def clear(self) -> None:
self.entries.clear()
self.index = 0
def next(
self, filename: str, lineno: int, instruction_pointer: int, inst: Instruction
) -> SpeculationEntry:
"""
Lookup or create a SpeculationEntry() that is shared across
RestartAnalysis calls. Args are used only for debug checks.
"""
if len(self.entries) == self.index:
self.entries.append(
SpeculationEntry(filename, lineno, instruction_pointer, inst)
)
entry = self.entries[self.index]
prev_entry_msg = ""
if self.index != 0:
prev_entry = self.entries[self.index - 1]
prev_entry_msg = (
f"Previous instruction: {prev_entry.filename}:{prev_entry.lineno}"
f"({prev_entry.inst.opname} @ {prev_entry.instruction_pointer})\n"
)
if not (
entry.instruction_pointer == instruction_pointer
and entry.filename == filename
and entry.lineno == lineno
):
raise SpeculationLogDivergence(
f"""
SpeculationLog diverged at index {self.index} (log had {len(self.entries)} entries):
- Expected: {entry.filename}:{entry.lineno} ({entry.inst.opname} at ip={entry.instruction_pointer})
- Actual: {filename}:{lineno} ({inst.opname} at ip={instruction_pointer})
{prev_entry_msg}
There are two usual reasons why this may have occurred:
- When Dynamo analysis restarted, the second run took a different path than
the first. If this occurred, the previous instruction is the critical instruction that
behaved differently.
- Speculation entries are only added under certain conditions (as seen in
step()), e.g., there must exist operators in the graph; those conditions may
have changed on restart.
If this divergence was intentional, clear the speculation log before restarting (do NOT
do this for graph breaks, you will infinite loop).
Otherwise, please submit a bug report, ideally including the contents of TORCH_LOGS=+dynamo
"""
)
self.index += 1
return entry
@dataclasses.dataclass
class LocalState:
automatic_dynamic: dict[str, FrameStateSizeEntry] = dataclasses.field(
default_factory=dict
)
def render(self) -> str:
return "\n".join(
f"{k}: {v.render()}" for k, v in self.automatic_dynamic.items()
)
# Mutable box that is shared across restarts
@dataclasses.dataclass
class DistributedState:
compile_pg: Any
local_state: LocalState
all_states: Optional[list[LocalState]] = None
class TensorifyState:
# These are the set of string symfloats names (eg. "zf0") that we collect
# from the tensorify_python_scalars.py joint fx pass to inform us about
# which float inputs we should specialize when we restart analysis.
force_specializations: set[str] = set()
@classmethod
def specialize(cls, index: str) -> None:
cls.force_specializations.add(index)
@classmethod
def should_specialize(cls, index: str) -> bool:
return index in cls.force_specializations
@classmethod
def clear(cls) -> None:
cls.force_specializations.clear()
@classmethod
def empty(cls) -> bool:
return len(cls.force_specializations) == 0
@functools.cache
def _step_logger() -> Callable[..., None]:
return torchdynamo_logging.get_step_logger(log)
@contextlib.contextmanager
def save_and_restart_speculation_log(
tx: InstructionTranslatorBase,
) -> Generator[None, None, None]:
# When reconstructing a generator after a graph break, we advance it until
# it is fully exhausted. This process adds new entries to the speculation
# log that were not previously observed. Without temporarily clearing the
# speculation log, this could lead to a divergence error.
entries = tx.speculation_log.entries
index = tx.speculation_log.index
try:
tx.speculation_log.entries = []
tx.speculation_log.index = 0
yield
finally:
tx.speculation_log.entries = entries
tx.speculation_log.index = index
@contextlib.contextmanager
def temporarely_allow_writes_to_output_graph(
tx: InstructionTranslatorBase,
) -> Generator[None, None, None]:
try:
tmp = tx.output.should_exit
tx.output.should_exit = False
yield
finally:
tx.output.should_exit = tmp
@dataclasses.dataclass
class BlockStackEntry:
# Current instruction that pushes something to block_stack
inst: Instruction
target: Instruction
stack_index: int
with_context: Optional[
Union[ContextWrappingVariable, GenericContextWrappingVariable]
] = None
def can_restore(self) -> bool:
return self.with_context is not None
def resume_fn(self) -> ReenterWith:
assert self.stack_index is not None
if (
self.with_context
and hasattr(self.with_context, "target_values")
and self.with_context.target_values
):
return ReenterWith(
self.stack_index - 1, tuple(self.with_context.target_values)
)
else:
return ReenterWith(self.stack_index - 1)
def exit(self, tx: InstructionTranslatorBase, is_graph_break: bool) -> None:
assert self.with_context is not None
if (
is_graph_break and self.with_context.exit_on_graph_break()
) or not is_graph_break:
return self.with_context.exit(tx) # type: ignore[arg-type]
class SpeculationLogDivergence(AssertionError):
pass
class ReturnValueOp(Exception):
pass
class YieldValueOp(Exception):
"""
Signal to the symbolic tracer to stop and return control flow to the
caller
"""
def stack_op(fn: Callable[..., object]) -> Callable[..., Any]:
nargs = len(inspect.signature(fn).parameters)
fn_var = BuiltinVariable(fn)
@functools.wraps(fn)
def impl(self: InstructionTranslator, inst: Instruction) -> None:
self.push(fn_var.call_function(self, self.popn(nargs), {}))
return impl
def is_stdlib(mod: object) -> bool:
if not isinstance(mod, types.ModuleType):
return False
return mod.__name__.split(".")[0] in sys.stdlib_module_names
@functools.cache
def get_assert_bytecode_sequence(with_msg: bool) -> list[str]:
if with_msg:
def fn(x: Any) -> None:
assert x, "msg"
else:
def fn(x: Any) -> None:
assert x
insts = [inst.opname for inst in dis.get_instructions(fn)]
# expect to find POP_JUMP_[FORWARD_]IF_TRUE
begin_idx = next(i for i, inst in enumerate(insts) if inst.startswith("POP_JUMP"))
end_idx = insts.index("RAISE_VARARGS")
return insts[begin_idx + 1 : end_idx + 1]
def _detect_and_normalize_assert_statement(
self: InstructionTranslatorBase,
truth_fn: Callable[[object], bool],
push: bool,
) -> bool:
# Detect if this jump instruction is assert and normalize the assert
# by pushing dummy error message when nothing is given.
#
# Python 3.9-3.13 assertion is in following format (minus small differences)
# 18 POP_JUMP_IF_TRUE 28
# 20 LOAD_ASSERTION_ERROR
# 22 LOAD_CONST 3 ('Assert message') -> optional instruction
# 24 CALL_FUNCTION 1 -> optional instruction
# 26 RAISE_VARARGS
if (truth_fn is not operator.truth) or push:
return False
assert isinstance(self.instruction_pointer, int)
current_instruction_pointer = self.instruction_pointer
for with_msg in (False, True):
assert_insts = get_assert_bytecode_sequence(with_msg)
cur_insts = self.instructions[
current_instruction_pointer : current_instruction_pointer
+ len(assert_insts)
]
cur_insts = [inst.opname for inst in cur_insts]
if cur_insts == assert_insts:
if with_msg:
load_const_idx = assert_insts.index("LOAD_CONST")
error_msg = self.instructions[
current_instruction_pointer + load_const_idx
].argval
else:
error_msg = "assertion error"
self.push(ConstantVariable.create(error_msg))
return True
return False
explain = False
def log_graph_break(
code_options: dict[str, Any],
reason: str = "",
exc_info: bool = False,
user_stack: Optional[StackSummary] = None,
latest_bytecode_log: Optional[str] = None,
) -> None:
if user_stack is None:
user_stack = torch._guards.TracingContext.extract_stack()
try:
frame_loc = (user_stack[-1].filename, user_stack[-1].lineno)
except IndexError:
# first instruction
frame_loc = (
code_options["co_filename"],
code_options["co_firstlineno"],
)
stack_above_dynamo_formatted = ""
if config.verbose:
stack_above_dynamo = get_stack_above_dynamo()
stack_above_dynamo_formatted = "".join(
traceback.format_list(stack_above_dynamo)
)
else:
user_stack = get_stack_above_dynamo() + user_stack # type: ignore[assignment]
# pyrefly: ignore # bad-argument-type
user_stack = collapse_resume_frames(user_stack)
user_stack_formatted = "".join(traceback.format_list(user_stack))
user_stack_trace = (
f"Graph break in user code at {frame_loc[0]}:{frame_loc[1]}\n"
f"Graph Break Reason: {reason}\n"
"User code traceback:\n"
)
if config.verbose:
user_stack_trace += (
f"{stack_above_dynamo_formatted}\n"
"========== most recent `torch.compile` tracing attempt started here ==========\n\n"
f"{user_stack_formatted}\n"
"NOTE: the most recent `torch.compile` tracing attempt might not be where you applied `torch.compile`! "
"This is due to how graph breaks are implemented - the optimized code object returned by Dynamo will call another "
"Dynamo-generated resume function and tracing is re-enabled by calling the resume function as a normal Python "
"function, which Dynamo intercepts as a top-level frame.\n"
)
else:
user_stack_trace += str(user_stack_formatted)
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "dynamo_graph_break_reason",
"encoding": "string",
},
payload_fn=lambda: f"{user_stack_trace}\n{traceback.format_exc() if exc_info else ''}",
)
# torch._dynamo.explain() formats this a little nicer, and presents a slightly
# more actionable user code pointer
if (
graph_break_log.isEnabledFor(logging.DEBUG)
and not explain
and graph_break_dup_warning_checker.add(frame_loc)
):
# This log line MUST contain the string "Graph break in user code",
# This log line is exercised from
# python test/dynamo/test_exc.py -k test_graph_break_log
if latest_bytecode_log and config.verbose:
user_stack_trace += "Most recent bytecode instructions traced (max 20):\n"
user_stack_trace += latest_bytecode_log
graph_break_log.debug(
user_stack_trace,
)
else:
# This log line MUST not contain the string "Graph break in user code",
# exercised by
# python test/dynamo/test_misc.py -k test_duplicate_graph_break_log
graph_break_log.debug(
"Graph break (user stack suppressed due to duplicate graph break) in user code at %s:%s\nGraph Break Reason: %s",
frame_loc[0],
frame_loc[1],
reason,
)
def generic_jump(
truth_fn: Callable[[object], bool], push: bool
) -> Callable[[InstructionTranslatorBase, Instruction], None]:
# graph break message fields for data dependent branching
_gb_type = "Data-dependent branching"
_explanation = (
"Detected data-dependent branching (e.g. `if my_tensor.sum() > 0:`). "
"Dynamo does not support tracing dynamic control flow."
)
_hints = [
*graph_break_hints.FUNDAMENTAL,
"Use `torch.cond` to express dynamic control flow.",
]
def jump_graph_break(
self: InstructionTranslatorBase,
inst: Instruction,
value: VariableTracker,
extra_msg: str = "",
) -> None:
log_graph_break(
self.code_options,
reason=format_graph_break_message(
gb_type=_gb_type,
context=f"attempted to jump with {value}",
explanation=_explanation,
hints=_hints,
),
)
assert self.should_compile_partial_graph()
# compile a partial subgraph prefix then jump into user code
if self.maybe_has_backedge():
msg = (
"Skipping frame because there is a graph break in a for/while loop\n"
f"{self.frame_summary()}"
)
log.info(msg)
raise exc.SkipFrame(msg)
self.push(value)
log.debug("generic_jump triggered compile")
all_stack_locals_metadata = self.output.compile_subgraph(
self,
reason=GraphCompileReason(
f"generic_jump {typestr(value)}{extra_msg}", [self.frame_summary()]
),
stack_pops=1,
)
self.pop()
if_next = self.codegen_fix_leaf_stack(
all_stack_locals_metadata[0], self.next_instruction
) + self.create_call_resume_at(
self.next_instruction,
all_stack_locals_metadata,
)
if push:
self.push(value)
assert inst.target is not None
if_jump = self.codegen_fix_leaf_stack(
all_stack_locals_metadata[0], inst.target
) + self.create_call_resume_at(
inst.target,
all_stack_locals_metadata,
)
if sys.version_info >= (3, 13):
# 3.13 requires stack[-1] to be bool type
self.output.add_output_instructions([create_instruction("TO_BOOL")])
jump_inst = create_instruction(inst.opname, target=if_jump[0])
jump_inst.copy_positions(inst)
self.output.add_output_instructions([jump_inst] + if_next + if_jump)
def inner(self: InstructionTranslatorBase, inst: Instruction) -> None:
value: VariableTracker = self.pop()
if (
config.rewrite_assert_with_torch_assert
and _detect_and_normalize_assert_statement(self, truth_fn, push)
):
error_msg: VariableTracker = self.pop()
# Skip over things like `assert True`
if value.is_python_constant():
if bool(value.as_python_constant()):
return self.jump(inst)
elif self.should_compile_partial_graph():
jump_graph_break(self, inst, value)
else:
unimplemented_v2(
gb_type="Data-dependent assertion failed (cannot compile partial graph)",
context=f"value: {value}",
explanation="Dynamo has determined when encountering a data-dependent assert failure "
"that it should not compile the partial graph.",
hints=[
*graph_break_hints.FUNDAMENTAL,
"Use `torch._assert()` to raise a hard AssertionError when the check fails. "
"This error will propagate back the user code "
"that called the compiled function (i.e. Dynamo will not trace any exception handling).",
"Remove the assert statement.",
"Move the assert statement outside of any context managers in order to graph break with "
"partial graph compilation (if fullgraph=False).",
],
)
# TODO maybe should respect DtoH sync intention of users later??
# Manually insert torch._assert_async instead of python assert and jump over
# assert related instructions as we don't need them anymore.
# if we see Tensor as assert statement, no need to call scalar_tensor
if isinstance(value, TensorVariable):
self.output.create_proxy(
"call_function",
torch._assert_async,
*proxy_args_kwargs((value, error_msg), {}),
)
self.jump(inst)
return
if isinstance(value, SymNodeVariable):
# if the assertion is normal shape expression.
# just install guard and bail out.
sym_expr = value.sym_num
if not isinstance(sym_expr, torch.SymBool):
sym_expr = sym_expr != 0
result = torch.fx.experimental.symbolic_shapes.expect_true(sym_expr)
if not result:
unimplemented_v2(
gb_type="Assertion failed on symbolic shapes",
context=str(sym_expr),
explanation="",
hints=[*graph_break_hints.USER_ERROR],
)
self.jump(inst)
return
scalar_to_tensor_proxy = self.output.create_proxy(
"call_function", torch.scalar_tensor, *proxy_args_kwargs((value,), {})
)
scalar_to_tensor = wrap_fx_proxy(
self,
scalar_to_tensor_proxy,
example_value=get_fake_value(scalar_to_tensor_proxy.node, self),
)
self.output.create_proxy(
"call_function",
torch._assert_async,
*proxy_args_kwargs((scalar_to_tensor, error_msg), {}),
)
self.jump(inst)
return
if value.is_python_constant():
# ConstDictVariable is optimized to be very lazy about insertion of
# guards, so we have to manually insert a SEQUENCE_LENGTH guard
# here.
if isinstance(value, ConstDictVariable) and value.source:
install_guard(value.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
if truth_fn(value.as_python_constant()):
if push:
self.push(value)
self.jump(inst)
elif (
isinstance(value, (TensorVariable)) and self.should_compile_partial_graph()
):
jump_graph_break(self, inst, value)
elif isinstance(value, NNModuleVariable):
# Equivalent of "self.nn_module is not None"
mod = self.output.get_submodule(value.module_key)
if truth_fn(mod):
if push:
self.push(value)
self.jump(inst)
elif isinstance(value, UserDefinedObjectVariable):
try:
x = value.var_getattr(self, "__bool__") # type: ignore[arg-type]
except exc.ObservedAttributeError:
exc.handle_observed_exception(self)
# if __bool__ is missing, trying __len__ to infer a truth value.
try:
x = value.var_getattr(self, "__len__") # type: ignore[arg-type]
except exc.ObservedAttributeError:
exc.handle_observed_exception(self)
x = None
# __bool__ or __len__ is function
if isinstance(x, UserMethodVariable):
result = x.call_function(self, [], {}) # type: ignore[arg-type, assignment]
if isinstance(result, ConstantVariable) and isinstance(
result.value, (bool, int)
):
if truth_fn(result.value):
if push:
self.push(value)
self.jump(inst)
elif isinstance(result, SymNodeVariable):
if result.evaluate_expr():
if push:
self.push(value)
self.jump(inst)
else:
unimplemented_v2(
gb_type="Data-dependent branching with non-constant __bool__",
context=f"method: {x}, result: {result}",
explanation="Attempted to perform data-dependent branching on a user-defined "
"object with a __bool__ method that did not return a constant.",
hints=[],
)
# __bool__ or __len__ is non-function or not existed in the user defined object
else:
if truth_fn(True):
if push:
self.push(value)
self.jump(inst)
elif not isinstance(value, TensorVariable) and value.has_unpack_var_sequence(
self
):
if truth_fn(len(value.unpack_var_sequence(self))):
if push:
self.push(value)
self.jump(inst)
elif isinstance(value, SymNodeVariable):
try:
# if the user is branching on a SymBool, guard on it
# if the user has code like:
# if size:
# ...
# then they are just testing truthiness: guard that the expr != 0
if isinstance(value.sym_num, torch.SymBool):
eval_result = value.evaluate_expr(self.output)
else:
eval_result = guard_bool(value.sym_num != 0)
except exc.UserError as e:
if self.should_compile_partial_graph():
return jump_graph_break(self, inst, value, extra_msg=f"\n{e}")
raise
if truth_fn(eval_result):
if push:
self.push(value)
self.jump(inst)
elif isinstance(value, variables.BackwardHookVariable):
if truth_fn(True):
if push:
self.push(value)
self.jump(inst)
else:
from .source import is_constant_source
if value.source is not None and is_constant_source(value.source):
if truth_fn(value.get_real_value()): # type: ignore[attr-defined]
if push:
self.push(value)
self.jump(inst)
else:
unimplemented_v2(
gb_type="Data-dependent branching",
context=f"attempted to jump with {value}",
explanation=_explanation,
hints=[
*graph_break_hints.FUNDAMENTAL,
"Use `torch.cond` to express dynamic control flow.",
],
)
return inner
def break_graph_if_unsupported(
*, push: int
) -> Callable[
[Callable[..., None]], Callable[[InstructionTranslatorBase, Instruction], None]
]:
def decorator(
inner_fn: Callable[..., None],
) -> Callable[[InstructionTranslatorBase, Instruction], None]:
@functools.wraps(inner_fn)
def wrapper(self: InstructionTranslatorBase, inst: Instruction) -> None:
speculation = self.speculate()
if speculation.failed(self):
assert speculation.reason is not None
return handle_graph_break(self, inst, speculation.reason)
try:
return inner_fn(self, inst)
except Unsupported as excp:
if self.active_generic_context_managers:
# We don't support graph break under GenericContextWrappingVariable,
# If there is, we roll back to the checkpoint and fall back.
excp.remove_from_stats()
unimplemented_v2(
gb_type="Graph break under GenericContextWrappingVariable",
context=f"Active generic context managers: {self.active_generic_context_managers}",
explanation="Attempted to graph break in an active context manager(s) that doesn't support graph breaking.",
hints=[
"Move the offending context manager(s) to outside the compiled region.",
*graph_break_hints.CAUSED_BY_EARLIER_GRAPH_BREAK,
],
from_exc=excp,
)
if isinstance(excp, exc.UncapturedHigherOrderOpError):
raise
if not self.should_compile_partial_graph():
raise
log_graph_break(
self.code_options,
exc_info=True,
reason=str(excp),
user_stack=excp.real_stack,
latest_bytecode_log="\n".join(self.latest_bytecode_queue),
)
if self.maybe_has_backedge():
msg = (
"Skipping frame because there is a graph break in a for/while loop\n"
f"{self.frame_summary()}"
)
log.info(msg)
raise exc.SkipFrame(msg) from excp
excp.remove_from_stats()
excp.add_to_stats("graph_break")
speculation.reason = GraphCompileReason(excp.msg, excp.real_stack)
speculation.fail_and_restart_analysis(self.error_on_graph_break)
def handle_graph_break(
self: InstructionTranslatorBase,
inst: Instruction,
reason: GraphCompileReason,
) -> None:
if (
sys.version_info >= (3, 11)
and sys.version_info < (3, 12)
and inst.opname == "CALL"
):
# stack effect for PRECALL + CALL is split between the two instructions
stack_effect = dis.stack_effect(
dis.opmap["PRECALL"], inst.arg
) + dis.stack_effect(dis.opmap["CALL"], inst.arg)
else:
stack_effect = dis.stack_effect(inst.opcode, inst.arg)
all_stack_locals_metadata = self.output.compile_subgraph(
self, reason=reason, stack_pops=push - stack_effect
)
cg = PyCodegen(self.output.root_tx)
cleanup: list[Instruction] = []
# Reconstruct the context variable CLASS in the block stack
for b in self.block_stack:
# Don't exit any modes we have entered,
# output bytecode will mutate the tf mode stack accordingly
if isinstance(b.with_context, TorchFunctionModeVariable):
cg.extend_output(
b.resume_fn().try_except_torch_function_mode(
cg.code_options, cleanup
)
)
continue
assert b.with_context is not None
assert isinstance(b.with_context, (ContextWrappingVariable))
b.with_context.reconstruct_type(cg)
cg.extend_output(b.resume_fn().try_finally(cg.code_options, cleanup))
self.output.add_output_instructions(cg.get_instructions())
del cg
if sys.version_info >= (3, 11) and inst.opname == "CALL":
kw_names = (
self.kw_names.as_python_constant()
if self.kw_names is not None
else ()
)
if len(kw_names) > 0:
# KW_NAMES no longer used in 3.13
assert sys.version_info < (3, 13)
self.output.add_output_instructions(
[create_instruction("KW_NAMES", argval=kw_names)]
)
assert inst.arg is not None
call_insts = create_call_function(inst.arg, False)
call_insts[-1].copy_positions(inst)
self.output.add_output_instructions(call_insts)
else:
# copy instruction, but without exception table data
assert inst.target is None
inst_copy = copy.copy(inst)
inst_copy.exn_tab_entry = None
self.output.add_output_instructions([inst_copy])
self.output.add_output_instructions(cleanup)
self.popn(push - stack_effect)
for _ in range(push):
self.push(UnknownVariable())
self.output.add_output_instructions(
self.codegen_fix_leaf_stack(
all_stack_locals_metadata[0], self.next_instruction
)
+ self.create_call_resume_at(
self.next_instruction,
all_stack_locals_metadata,
)
)
return wrapper
return decorator
class BytecodeDispatchTableMeta(type):
"""Installs a `cls.dispatch_table` on every subclass to speed up calls to self.OPCODE()"""
def __init__(cls: type, name: str, bases: Any, dct: Any) -> None:
super().__init__(name, bases, dct) # type: ignore[misc]
def _missing(opname: str, *args: Any) -> None:
unimplemented_v2(
gb_type="Missing bytecode handler",
context=f"{opname} with args {args}",
explanation=f"Dynamo does not know how to handle the bytecode instruction `{opname}`.",
hints=[
f"Do not trace code that produces the `{opname}` bytecode instruction "
"(see https://docs.python.org/3/library/dis.html for bytecode semantics).",
*graph_break_hints.SUPPORTABLE,
],
)
dispatch_table = {
op: getattr(cls, opname, functools.partial(_missing, opname))
for opname, op in dis.opmap.items()
}
# pyrefly: ignore # missing-attribute
cls.dispatch_table = [dispatch_table.get(i) for i in range(2**8)]
@dataclasses.dataclass
class ExceptionStack:
"""
Exception stack that it is shared among all InstructionTranslator instances
"""
# Exception handling in CPython is a bit confusing and some of the bytecode
# have a slightly different behavior than what is documented. While reading
# the documentation, is important to notice that the terms "current exception"
# and "stack" sometimes refers to a C variable with the same name and the
# exception stack, respectively.
#
# The lifetime of an exception is (Python 3.11+):
# + tx._raise_exception_variable(...) := sets the current_exception variable
# + PUSH_EXC_INFO := pushes the current_exception to the *exception stack*
# + POP_EXCEPT := pops TOS from the *exception stack*
_exc_stack: list[ExceptionVals] = dataclasses.field(default_factory=list)
_current_exception: Optional[ExceptionVals] = dataclasses.field(default=None)
def clear_current_exception(self) -> None:
self._current_exception = None
def set_current_exception(self, val: ExceptionVals) -> None:
self._set_context_and_break_context_reference_cycle(val)
self._current_exception = val
def move_current_exception_to_stack(self) -> None:
assert self._current_exception is not None
self.append(self._current_exception)
self.clear_current_exception()
def get_current_exception(self) -> ExceptionVals:
assert self._current_exception is not None
return self._current_exception
def _set_context_recursive(
self, val: ExceptionVals, prev_idx: int
) -> ExceptionVals:
if (ctx := val.__context__) and type(ctx) is not ConstantVariable: # type: ignore[union-attr]
return val
if len(self._exc_stack) + prev_idx > 0:
prev = self._exc_stack[prev_idx]
self._set_context_recursive(prev, prev_idx - 1)
val.set_context(prev) # type: ignore[union-attr, arg-type]
return val
def _break_context_reference_cycle(self, val: ExceptionVals) -> None:
# See test_exceptions::test_raise_does_not_create_context_chain_cycle
# Based on https://github.com/python/cpython/blob/e635bf2e49797ecb976ce45a67fce2201a25ca68/Python/errors.c#L207-L228
# As noted on CPython, this is O(chain length) but the context chains
# are usually very small
o = slow_o = val
slow_update_toggle = False # floyd's algorithm for detecting cycle
while True:
context = o.__context__ # type: ignore[union-attr]
if type(context) is ConstantVariable: # context not set
break
if context is val:
o.set_context(ConstantVariable(None)) # type: ignore[union-attr, arg-type]
break
o = context # type: ignore[assignment]
if o is slow_o:
# pre-existing cycle - all exceptions on the path were
# visited and checked
break
if slow_update_toggle:
# visited all exceptions
slow_o = slow_o.__context__ # type: ignore[union-attr, assignment]
slow_update_toggle = not slow_update_toggle
def _set_context_and_break_context_reference_cycle(
self, val: ExceptionVals
) -> None:
# set Exception.__context__
self._set_context_recursive(val, len(self._exc_stack) - 1)
self._break_context_reference_cycle(val)
def pop(self) -> ExceptionVals:
return self._exc_stack.pop()
def append(self, val: ExceptionVals) -> None:
self._exc_stack.append(val)
def __len__(self) -> int:
return len(self._exc_stack)
def __getitem__(self, index: int) -> ExceptionVals:
return self._exc_stack[index]
def __str__(self) -> str:
return f"{self._exc_stack=} - {self._current_exception=}"
__repr__ = __str__
class InstructionTranslatorBase(
metaclass=BytecodeDispatchTableMeta,
):
output: OutputGraph
symbolic_locals: dict[str, VariableTracker]
symbolic_globals: dict[str, VariableTracker]
symbolic_torch_function_state: SymbolicTorchFunctionState
post_prune_cell_and_freevars: Optional[dict[str, VariableTracker]]
stack: list[VariableTracker]
instruction_pointer: Optional[int]
current_instruction: Instruction
block_stack: list[BlockStackEntry]
lineno: int
kw_names: Optional[ConstantVariable]
accept_prefix_inst: bool
prefix_insts: list[Instruction]
inline_depth: int
inconsistent_side_effects: bool
current_speculation: Optional[SpeculationEntry]
dispatch_table: list[Any]
exn_vt_stack: ExceptionStack
exec_recorder: Optional[ExecutionRecorder]
strict_checks_fn: Optional[Callable[[VariableTracker], bool]]
start_point: Optional[int]
is_leaf_tracer: bool
parent: Optional[InstructionTranslatorBase]
debug_locals: list[tuple[VariableTracker, list[VariableTracker]]]
package: Optional[CompilePackage]
latest_bytecode_queue: deque[str]
# Store the latest bytecode before graph_break() call by user
def mark_inconsistent_side_effects(self) -> None:
"""
InstructionTranslator has encountered instructions which may cause
dynamo to see a different version of history from eager
See: https://github.com/pytorch/pytorch/issues/110765
"""
self.inconsistent_side_effects = True
def maybe_has_backedge(self) -> bool:
# This function employs a heuristic. It does not reliably detect a backedge.
# The heuristic is straightforward: starting from the current instruction and
# continuing to the end, if any jump instruction targets an instruction before
# the current one, there might be a backedge.
# Python 3.12 introduced changes to bytecode that group common paths in
# blockstacks (with or try...else) and allow for early returns. Consequently,
# there can be multiple RETURN_VALUE instructions. Another heuristic is to
# halt detection upon encountering the first RETURN_VALUE or RETURN_CONST.
# These heuristics can result in both false positives and negatives, but
# in either case, the Dynamo code remains valid. For false positives
# (where an edge is incorrectly marked as a backedge), Dynamo will
# perform a SkipFrame instead of potentially applying optimizations. For
# false negatives (where an edge that should be marked as a backedge
# isn't), multiple graphs may be generated if there's a break in the
# graph during a for loop. In general, its better to have fewer false
# negatives so that Dynamo does not skip the whole frame.
# If any parent tx has a backedge, then return True
cur_tx: Optional[InstructionTranslatorBase] = self
while cur_tx is not None:
cur_offset = cur_tx.current_instruction.offset
assert cur_tx.instruction_pointer is not None
for inst in cur_tx.instructions[cur_tx.instruction_pointer :]:
if inst.opname in ("RETURN_VALUE", "RETURN_CONST"):
break
if inst.opname in JUMP_OPNAMES:
jump_offset = inst.argval
if jump_offset < cur_offset:
return True
cur_tx = cur_tx.parent
return False
def cellvars(self) -> list[str]:
return self.code_options["co_cellvars"]
def freevars(self) -> list[str]:
return self.code_options["co_freevars"]
def cell_and_freevars(self) -> list[str]:
if not hasattr(self, "_cell_and_freevars"):
self._cell_and_freevars = self.cellvars() + self.freevars()
return self._cell_and_freevars
def prune_dead_locals(self) -> None:
# keep cell and freevar references alive
self.post_prune_cell_and_freevars = {
k: v
for k, v in self.symbolic_locals.items()
if k in self.cell_and_freevars()
}
# Only keep the locals that must remain on the stack.
reads = livevars_analysis(self.instructions, self.current_instruction)
self.symbolic_locals = {
k: v for k, v in self.symbolic_locals.items() if k in reads
}
def call_function(
self,
fn: VariableTracker,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> None:
assert isinstance(fn, VariableTracker)
assert isinstance(args, list)
assert isinstance(kwargs, dict)
assert all(
isinstance(x, VariableTracker)
for x in itertools.chain(args, kwargs.values())
)
inner_fn = None
if hasattr(fn, "value"):
inner_fn = fn.value
if hasattr(fn, "fn"):
inner_fn = fn.fn
if inner_fn and callable(inner_fn) and is_forbidden(inner_fn):
raise AssertionError(f"Attempt to trace forbidden callable {inner_fn}")
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
def inline_generator_function(
self, fn: VariableTracker, args: Sequence[Any], kwargs: dict[str, Any]
) -> Any:
"""
Redirect the call to the generator "call_function"
"""
if not isinstance(fn, LocalGeneratorFunctionVariable):
fn = LocalGeneratorFunctionVariable(fn) # type: ignore[arg-type]
return fn.call_function(self, args, kwargs) # type: ignore[arg-type]
def inline_user_function_return(
self, fn: VariableTracker, args: Sequence[Any], kwargs: dict[str, Any]
) -> Any:
"""
A call to some user defined function by inlining it.
"""
self.is_leaf_tracer = False
if config.enable_faithful_generator_behavior and is_generator(fn.get_code()): # type: ignore[attr-defined]
return self.inline_generator_function(fn, args, kwargs)
else:
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
def get_line_of_code_header(self, lineno: Optional[int] = None) -> str:
if lineno is None:
lineno = self.lineno
inline_depth_str = (
f" (inline depth: {self.inline_depth})" if self.inline_depth > 0 else ""
)
funcname = get_funcname(self.f_code.co_filename, lineno)
funcname_str = "" if funcname is None else f" ({funcname})"
return f"{self.f_code.co_filename}:{lineno} in {self.f_code.co_name}{funcname_str}{inline_depth_str}"
def get_log_starts_line_log_str(self) -> str:
log_str = f"TRACE starts_line {self.get_line_of_code_header()}\n"
line = linecache.getline(self.f_code.co_filename, self.lineno).rstrip()
log_str += f" {line}"
return log_str
def starts_line(self, lineno: int) -> None:
if self.lineno == lineno:
return
self.lineno = lineno
TracingContext.set_current_loc(
self.f_code.co_filename, lineno, self.f_code.co_name
)
if self.is_trace_source_log_enabled:
trace_source_log.debug("%s", LazyString(self.get_log_starts_line_log_str))
def step(self) -> bool:
"""Process exactly one instruction, return False we should exit"""
self.error_on_graph_break = _get_error_on_graph_break()
ip = self.instruction_pointer
if ip is None:
return False
self.current_instruction = inst = self.instructions[ip]
self.instruction_pointer = ip + 1
if inst.starts_line:
self.starts_line(inst.starts_line)
if (
not self.stack
and self.should_compile_partial_graph()
and self.is_non_empty_graph()
):
self.current_speculation = self.speculate()
if self.current_speculation.failed(self):
self.step_graph_break(inst)
return False
if self.is_trace_bytecode_log_enabled:
trace_bytecode_log.debug(
"TRACE %s %s %s", inst.opname, inst.argval, repr(self.stack)
)
# Store the latest 20 bytecode execution for the process,
# Used repr for byte processing and limiting the length to 2048
try:
stack_repr = repr(self.stack)
except ValueError:
# Handle large integers that exceed sys.int_info.str_digits_check_threshold
stack_repr = "<self.stack repr truncated due to large integer>"
self.latest_bytecode_queue.append(
f"TRACE {inst.opname} {repr(inst.argval)} {stack_repr}"
)
self.update_block_stack(inst)
try:
self.dispatch_table[inst.opcode](self, inst)
return not self.output.should_exit
except TensorifyScalarRestartAnalysis:
raise
except exc.ObservedException as e:
self.exception_handler(e)
return True
except (ReturnValueOp, YieldValueOp):
return False
except (Unsupported, StepUnsupported) as e:
if self.current_speculation is None:
log.debug("empty checkpoint")
if isinstance(e, StepUnsupported):
unimplemented_v2(
gb_type="torch._dynamo.step_unsupported() with empty checkpoint",
context="",
explanation="traced torch._dynamo.step_unsupported(), but there is no checkpoint "
"to step_graph_break from. This graph break is used for debugging only.",
hints=[
"Remove the torch._dynamo.step_unsupported() call.",
"Include at least one checkpoint: (1) include at least 2 ops and (2) make sure there is some "
"line of code that is not in a try/with block, and has an empty Python stack.",
*graph_break_hints.DYNAMO_BUG,
],
)
raise
log.debug("step triggered compile", exc_info=True)
self.current_speculation.fail_and_restart_analysis(self.error_on_graph_break)
return False
if sys.version_info >= (3, 11):
def update_block_stack(self, inst: Instruction) -> None:
# 3.11+ no longer uses a block stack, but we still keep track of one
# so that we know which contexts are currently active.
# For our purposes, all exception table entries with the same target
# are considered to be part of the same "block".
# NOTE: we only keep track of with blocks that are not contained in try blocks.
# This is because we will not create continuation functions on graph breaks in try blocks,
# but we may for with blocks. We do not push blocks here since
# with blocks are pushed when handling BEFORE_WITH.
entry = inst.exn_tab_entry
if entry:
# Detect when we have exited the top with block.
# The with blocks on the block stack are not enclosed in try
# blocks, so a with block's cleanup code should be in the
# previous with block (if any).
if (
len(self.block_stack) >= 2
and entry.target is not self.block_stack[-1].target
and entry.target is self.block_stack[-2].target
):
# exit the current block
self.block_stack.pop()
else:
# no longer in any block
# It is possible for NOPs to be between two instructions
# in the same block, but the NOPs are not covered by an
# exception table entry. In this case, assume that we
# are still in the same block.
# In 3.12+, JUMP_BACKWARD might also not be covered by
# an exception table entry, so we also assume that we
# are still in the same block. It is probably safe to do
# this in 3.11, even though we haven't encountered this case before.
if self.block_stack and inst.opname not in ("NOP", "JUMP_BACKWARD"):
# If we really escape from a block and the current
# instruction is not in another block, then there
# should be no other nested blocks that we are in.
assert len(self.block_stack) == 1
self.block_stack.pop()
else:
def update_block_stack(self, inst: Instruction) -> None:
pass
@property
def next_instruction(self) -> Instruction:
assert self.instruction_pointer is not None
return self.instructions[self.instruction_pointer]
def step_graph_break(self, continue_inst: Instruction) -> None:
# generate code from checkpoint
assert not self.output.output_instructions
assert self.current_speculation is not None
# NOTE: adding an assert here since it seems like the only place
# where we call step_graph_break right now is when the stack is empty,
# so let's enforce that for now.
assert not self.stack
# NOTE: if we support non-empty self.stack in the future, the `stack_pops` argument
# below should be set to the stack length to ensure that the stack is codegen'd
# for the rest of the function.
all_stack_locals_metadata = self.output.compile_subgraph(
self,
partial_convert=True,
reason=GraphCompileReason("step_unsupported", [self.frame_summary()]),
)
# current frame state
# cells,
# [
# frame N locals,
# frame N-1 stack + locals,
# ...,
# frame 1 stack + locals,
# ],
if self.parent:
from .eval_frame import skip_code
# nested graph break
assert config.nested_graph_breaks
cg = PyCodegen(self.output.root_tx)
# codegen cells and frame values only for frame N
cg.extend_output(
[
*create_copy(2),
cg.create_load_const(0),
cg.create_binary_subscr(),
create_instruction("BUILD_LIST", arg=1),
*create_copy(2),
cg.create_load_const(0),
cg.create_binary_subscr(),
create_instruction("BUILD_LIST", arg=1),
]
)
# No need to fix stack, since stack is assumed to be empty here.
# Do NOT handle_inactive_ctx because we will be skipping this resume code.
leaf_resume_code, leaf_resume_name = self.create_resume(
0, continue_inst, all_stack_locals_metadata[0], [], cg, True, False
)
skip_code(leaf_resume_code)
# current frame state
# cells,
# [
# frame N locals,
# frame N-1 stack + locals,
# ...,
# frame 1 stack + locals,
# ], [frame N cells], [frame N locals],
self.codegen_call_resume([leaf_resume_code], [leaf_resume_name], cg)
# current frame state
# cells,
# [
# frame N locals,
# frame N-1 stack + locals,
# ...,
# frame 1 stack + locals,
# ], leaf_resume result
# add the leaf_resume result to frame N-1 stack
num_stack = all_stack_locals_metadata[1].num_stack
cg.extend_output(
[
create_instruction("BUILD_LIST", arg=1),
*create_copy(2),
cg.create_load_const(1),
cg.create_binary_subscr(),
*create_binary_slice(num_stack, num_stack, True),
]
)
# pop frame N cells and locals
cg.extend_output(
[
*create_copy(1),
cg.create_load_const(0),
create_instruction("DELETE_SUBSCR"),
*create_copy(2),
cg.create_load_const(0),
create_instruction("DELETE_SUBSCR"),
]
)
# call the remaining resume functions
# current frame state
# [frame N-1 cells, ..., frame 1 cells],
# [
# frame N-1 stack (including leaf_resume result) + locals,
# ...,
# frame 1 stack + locals,
# ],
self.parent.push(UnknownVariable())
all_stack_locals_metadata[1].num_stack += 1
self.output.add_output_instructions(
cg.get_instructions()
+ self.parent.create_call_resume_at(
self.parent.next_instruction, all_stack_locals_metadata[1:]
)
)
else:
# pop cells
self.output.add_output_instructions(
[
*create_swap(2),
create_instruction("POP_TOP"),
]
)
# load locals from frame values
cg = PyCodegen(self.output.root_tx)
self.output.add_output_instructions(
[
cg.create_load_const(-1),
cg.create_binary_subscr(),
]
)
for local, idx in all_stack_locals_metadata[-1].locals_names.items():
self.output.add_output_instructions(
[
create_dup_top(),
cg.create_load_const(idx),
cg.create_binary_subscr(),
cg.create_store(local),
]
)
self.output.add_output_instructions(
[
create_instruction("POP_TOP"),
create_jump_absolute(continue_inst),
*self.instructions,
]
)
def run_ctx_mgr(self) -> Any:
# NB: Don't push the top level frame summary; set_current_loc will
# take care of it. However, DO make sure we attach real_stack to
# exceptions
return TracingContext.current_frame(None)
def run(self) -> None:
with self.run_ctx_mgr():
dump_file(self.f_code.co_filename)
try:
self.output.push_tx(self)
self.start_point = self.instruction_pointer
try:
while self.step():
pass
except Exception as e:
if self.is_tracing_resume_prologue:
raise ResumePrologueTracingError(
"Error while tracing through a Dynamo-generated resume function prologue. "
"Errors are not allowed when tracing resume function prologues.\n"
f"{type(e).__qualname__}: {str(e)}"
).with_traceback(e.__traceback__) from None
raise
except TensorifyScalarRestartAnalysis:
raise
except BackendCompilerFailed:
raise
except RuntimeError as e:
if hasattr(e, "msg") and "Data-dependent" in e.msg:
readable_graph = torch.fx.GraphModule(
self.output.nn_modules, self.output.graph
).print_readable(
print_output=False, include_stride=True, include_device=True
)
e.partial_fx_graph = readable_graph # type: ignore[attr-defined]
raise
raise
except Exception as e:
if self.exec_recorder:
e.exec_record = self.exec_recorder.get_record() # type: ignore[attr-defined]
raise
finally:
self.output.pop_tx()
# Cleanup the outputGraph to delete the held tensors. We perform the
# cleanup only for InstructionTranslator and not
# InliningInstructionTranslator. The InliningInstructionTranslator
# mutates the output object and is restored to original state if
# there was an exception.
if isinstance(self, InstructionTranslator):
self.output.cleanup()
# Note that this call maybe redundant if compile_subgraph is
# called. This is ok, because calling exit stack close()
# twice is not an issue (second stop is a no op).
self.output.mark_bytecode_tracing_stop()
def push(self, val: Optional[VariableTracker]) -> None:
assert val is None or isinstance(val, VariableTracker), (
f"push expects VariableTracker, got {typestr(val)}"
)
self.stack.append(val) # type: ignore[arg-type]
def push_many(self, vals: list[VariableTracker]) -> None:
for val in vals:
self.push(val)
def pop(self) -> VariableTracker:
return self.stack.pop()
def popn(self, n: int) -> list[VariableTracker]:
return [*reversed([self.pop() for _ in range(n)])]
def LOAD_FAST(self, inst: Instruction) -> None:
name = inst.argval
if self.exec_recorder and name in self.f_locals:
self.exec_recorder.add_local_var(name, self.f_locals[name])
try:
self.push(self.symbolic_locals[name].unwrap())
except KeyError:
if name.startswith("."):
try:
# This happens in dict/list comprehensions
new_name = name.replace(".", "implicit")
self.push(self.symbolic_locals[new_name])
except KeyError:
unimplemented_v2(
gb_type="Attempted to read undefined local variable (implicit)",
context=f"LOAD_FAST {name}",
explanation=f"Could not find an implicit local variable with name `{name}`",
hints=[
"This happens in dict/list comprehensions",
*graph_break_hints.USER_ERROR,
],
)
else:
unimplemented_v2(
gb_type="Attempted to read undefined local variable",
context=f"LOAD_FAST {name}",
explanation=f"Could not find a local variable with name `{name}`",
hints=[*graph_break_hints.USER_ERROR],
)
# for continuation functions
if name.startswith("__stack"):
self.symbolic_locals.pop(name)
def LOAD_DEREF(self, inst: Instruction) -> None:
assert inst.argval in self.cell_and_freevars()
cell = self.symbolic_locals[inst.argval]
contents_var = self.output.side_effects.load_cell(cell)
self.push(contents_var)
if self.exec_recorder and inst.argval in self.f_locals:
self.exec_recorder.add_local_var(inst.argval, self.f_locals[inst.argval])
def STORE_FAST(self, inst: Instruction) -> None:
name = inst.argval
loaded_vt = self.pop()
loaded_vt.set_name_hint(name)
self.symbolic_locals[name] = loaded_vt
if name == IS_TRACING_RESUME_PROLOGUE_VARNAME:
val = loaded_vt.as_python_constant()
assert type(val) is bool
self.is_tracing_resume_prologue = val
def DELETE_FAST(self, inst: Instruction) -> None:
del self.symbolic_locals[inst.argval]
def STORE_DEREF(self, inst: Instruction) -> None: # type: ignore[override]
assert inst.argval in self.cell_and_freevars()
cell = self.symbolic_locals[inst.argval]
val = self.pop()
self.output.side_effects.store_cell(cell, val)
assert isinstance(cell, CellVariable) # tame mypy
if cell.local_name is not None:
val.set_name_hint(cell.local_name) # type: ignore[attr-defined]
LOAD_CLOSURE = LOAD_FAST
def _load_const(self, inst: Instruction) -> VariableTracker:
i = inst.arg
if i is None:
return ConstantVariable.create(value=inst.argval) # type: ignore[return-value]
val = self._constants_cache[i]
if not val:
self._constants_cache[i] = ConstantVariable.create(value=inst.argval) # type: ignore[call-overload]
val = self._constants_cache[i]
assert val is not None
return val
def LOAD_CONST(self, inst: Instruction) -> None:
self.push(self._load_const(inst))
def _load_global(self, inst: Instruction) -> None:
name = inst.argval
if self.exec_recorder:
if name in self.f_globals:
self.exec_recorder.add_global_var(name, self.f_globals[name])
else:
assert name in self.f_builtins
self.exec_recorder.builtins[name] = self.f_builtins[name]
if name not in self.f_globals:
return self.load_builtin(inst)
if name in self.symbolic_globals:
variable = self.output.side_effects[self.symbolic_globals[name]]
self.push(self.output.side_effects.load_global(variable, name))
return
value = self.f_globals[name]
self.push(VariableTracker.build(self, value, GlobalSource(name)))
@functools.cached_property
def nn_modules_globals_vt(self) -> VariableTracker:
module_name = "torch.nn.modules.module"
module_source = self.import_source(module_name)
fglobals_value = _import_module(module_name)
return VariableTracker.build(self, fglobals_value, module_source)
def LOAD_GLOBAL(self, inst: Instruction) -> None:
assert inst.arg is not None
if sys.version_info >= (3, 11) and sys.version_info < (3, 13) and inst.arg % 2:
self.PUSH_NULL(inst)
self._load_global(inst)
if sys.version_info >= (3, 13) and inst.arg % 2:
self.PUSH_NULL(inst)
def STORE_GLOBAL(self, inst: Instruction) -> None:
value = self.pop()
name = inst.argval
source = GlobalSource(name)
if name not in self.symbolic_globals:
self.symbolic_globals[name] = object() # type: ignore[assignment] # sentinel object
variable = self.output.side_effects.track_global_existing(
source, self.symbolic_globals[name]
)
if isinstance(value, RemovableHandleVariable):
unimplemented_v2(
gb_type="Storing Tensor hook handle in globals",
context=name,
explanation="This is not supported.",
hints=[],
)
self.output.side_effects.store_global(variable, name, value)
# Cache note: This cache only exists for the duration of this
# InstructionTranslator - so it should be safe to do.
@cache_method
def import_source(self, module_name: str) -> GlobalSource:
"""Create an alias to a module for use in guards"""
if "torch_package" in module_name:
value = torch.package.package_importer._package_imported_modules[
module_name
]
alias = (
module_name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
)
else:
value = _import_module(module_name)
alias = f"__import_{module_name.replace('.', '_dot_')}"
if self.package is not None:
self.package.add_import_source(alias, module_name)
self.output.import_sources[alias] = module_name
f_globals = self.output.global_scope
assert alias not in f_globals or f_globals[alias] is value
f_globals[alias] = value
self.output.update_co_names(alias)
return GlobalSource(alias)
def resolve_name(self, name: str, package: str, level: int) -> str:
"""
Copied from the Cpython implementation of __import__
Resolve a relative module name to an absolute one.
https://github.com/python/cpython/blob/5a094f0255eea1db58fb2cf14c200971e64ec36e/Lib/importlib/_bootstrap.py#L902
"""
bits = package.rsplit(".", level - 1)
if len(bits) < level:
raise ImportError("attempted relative import beyond top-level package")
base = bits[0]
return f"{base}.{name}" if name else base
def calc_package(self) -> str:
"""
Copied from the Cpython implementation of __import__
https://github.com/python/cpython/blob/5a094f0255eea1db58fb2cf14c200971e64ec36e/Lib/importlib/_bootstrap.py#L1090
"""
package = self.f_globals.get("__package__")
spec = self.f_globals.get("__spec__")
if package is not None:
if spec is not None and package != spec.parent:
log.warning(
"__package__ != __spec__.parent (%r != %r)",
package,
spec.parent,
stacklevel=3,
)
return package
elif spec is not None:
return spec.parent
else:
log.warning(
"can't resolve package from __spec__ or __package__, "
"falling back on __name__ and __path__",
stacklevel=3,
)
package = self.f_globals["__name__"]
if "__path__" not in self.f_globals:
package = package.rpartition(".")[0]
return package
def IMPORT_NAME(self, inst: Instruction) -> None:
level, fromlist = self.popn(2)
level = level.as_python_constant()
fromlist = fromlist.as_python_constant()
module_name = inst.argval
# Are we replaying? if so, load recorded module
recorded_name = (
f"{ExecutionRecorder.LOCAL_MOD_PREFIX}_{level}_{fromlist}_{module_name}"
)
if recorded_name in self.f_globals:
value = self.f_globals[recorded_name]
source = GlobalSource(recorded_name)
else:
try:
value = __import__(
module_name,
fromlist=fromlist,
level=level,
globals=self.f_globals,
)
except ImportError:
unimplemented_v2(
gb_type="Import failure",
context=f"module_name: {module_name}, fromlist: {fromlist}, level={level}",
explanation="Failure when attempting to import.",
hints=[*graph_break_hints.USER_ERROR],
)
if level != 0:
pkg = self.calc_package()
module_name = self.resolve_name(module_name, pkg, level)
# For __import__, when the name variable is of the form package.module,
# normally, the top-level package (the name up till the first dot) is
# returned, not the module named by module_name. However, when a
# non-empty fromlist argument is given, the module named by name is
# returned. Therefore, we set the source correctly here.
if not fromlist:
top_level_module_name = module_name.partition(".")[0]
source = self.import_source(top_level_module_name)
else:
source = self.import_source(module_name)
if self.exec_recorder:
# pyrefly: ignore # unbound-name
self.exec_recorder.add_local_mod(recorded_name, value)
# pyrefly: ignore # unbound-name
if istype(value, (types.ModuleType, DummyModule)):
# pyrefly: ignore # unbound-name
self.push(PythonModuleVariable(value, source=source))
else:
unimplemented_v2(
gb_type="Bad import result",
# pyrefly: ignore # unbound-name
context=typestr(value),
explanation="Import result is not a Python module.",
hints=[],
)
# fb internal 3.12 opcode
EAGER_IMPORT_NAME = IMPORT_NAME
def IMPORT_FROM(self, inst: Instruction) -> None:
self.DUP_TOP(inst)
self._load_attr(inst.argval)
# Cache note: This cache only exists for the duration of this
# InstructionTranslator - so it should be safe to do.
@cache_method
def load_builtin_from_argval(self, argval: Any) -> VariableTracker:
if argval not in self.f_builtins:
raise Unsupported(f"name '{argval}' is not defined")
val = self.f_builtins[argval]
if callable(val):
builtins_source = GlobalSource(
self.output.name_of_builtins_dict_key_in_fglobals
)
var_source = DictGetItemSource(builtins_source, argval)
return VariableTracker.build(self, val, var_source)
else:
assert is_builtin_constant(val)
return ConstantVariable.create(value=val)
def load_builtin(self, inst: Instruction) -> None:
self.push(self.load_builtin_from_argval(inst.argval))
def jump(self, inst: Instruction) -> None:
assert self.instruction_pointer is not None
assert self.start_point is not None
assert inst.target is not None
get_metrics_context().increment(
"ir_count", self.instruction_pointer - self.start_point
)
self.instruction_pointer = self.indexof[inst.target]
self.start_point = self.instruction_pointer
JUMP_FORWARD = jump
JUMP_ABSOLUTE = jump
POP_JUMP_IF_FALSE = generic_jump(operator.not_, False)
POP_JUMP_IF_TRUE = generic_jump(operator.truth, False)
JUMP_IF_FALSE_OR_POP = generic_jump(operator.not_, True)
JUMP_IF_TRUE_OR_POP = generic_jump(operator.truth, True)
def SETUP_LOOP(self, inst: Instruction) -> None:
# only exists in python<=3.7
assert inst.target is not None
self.block_stack.append(BlockStackEntry(inst, inst.target, len(self.stack)))
def SETUP_EXCEPT(self, inst: Instruction) -> None:
# only exists in python<=3.7
assert inst.target is not None
self.block_stack.append(BlockStackEntry(inst, inst.target, len(self.stack)))
def POP_BLOCK(self, inst: Instruction) -> None:
self.block_stack.pop()
def SETUP_WITH(self, inst: Instruction) -> None:
self.setup_or_before_with(inst)
def SETUP_FINALLY(self, inst: Instruction) -> None:
assert inst.target is not None
self.block_stack.append(BlockStackEntry(inst, inst.target, len(self.stack)))
def BEGIN_FINALLY(self, inst: Instruction) -> None:
self.push(None)
def WITH_CLEANUP_START(self, inst: Instruction) -> None:
exit, exc = self.popn(2)
assert exc is None
self.push(exc)
# pyrefly: ignore # bad-argument-type
self.push(exit.call_function(self, [ConstantVariable.create(None)] * 3, {}))
def WITH_CLEANUP_FINISH(self, inst: Instruction) -> None:
self.popn(2)
self.push(None)
def FOR_ITER(self, inst: Instruction) -> None:
it = self.pop().realize()
try:
val = it.next_variable(self)
self.push(it)
self.push(val)
except (StopIteration, exc.ObservedUserStopIteration) as e:
if isinstance(e, exc.ObservedUserStopIteration):
exc.handle_observed_exception(self)
# leave iterator upon exhaustion in 3.12
if sys.version_info >= (3, 12):
# CPython 3.12 actually jumps to the instruction after the END_FOR
# and performs the action of END_FOR as part of FOR_ITER. We jump
# to the END_FOR and run it, so we need to make sure 2 values are
# on the stack for it to pop.
self.push(it)
self.push(ConstantVariable.create(None))
self.jump(inst)
def _create_exception_type(self, val: VariableTracker) -> VariableTracker:
if isinstance(
val, (variables.BuiltinVariable, UserDefinedExceptionClassVariable)
):
# Create the instance of the exception type
# https://github.com/python/cpython/blob/3.11/Python/ceval.c#L6547-L6549
val = val.call_function(self, [], {}) # type: ignore[arg-type]
return val
def _raise_exception_variable(self, val: VariableTracker) -> NoReturn:
# User can raise exception in 2 ways
# 1) raise exception type - raise NotImplementedError
# 2) raise exception instance - raise NotImplemetedError("foo")
# 1) when user raises exception type
val = self._create_exception_type(val)
# Handle https://peps.python.org/pep-0479/
# CPython 3.12+ has a specific bytecode instruction (CALL_INTRINSIC_1 3) for this
if (
is_generator(self.f_code)
and isinstance(val, variables.ExceptionVariable)
and val.exc_type is StopIteration
):
val = variables.BuiltinVariable(RuntimeError).call_function(self, [], {}) # type: ignore[arg-type]
# Save the exception in a global data structure
self.exn_vt_stack.set_current_exception(val) # type: ignore[arg-type]
# 2) when user raises exception instance
if self._isinstance_exception(val):
observed_exception_type = exc.get_dynamo_observed_exception(val.exc_type) # type: ignore[attr-defined, union-attr]
raise observed_exception_type(f"raised exception {val}")
unimplemented_v2(
gb_type="Failed to raise exception",
context=str(exc),
explanation="Attempted to raise a non-Exception type/value.",
hints=[*graph_break_hints.USER_ERROR],
)
def RAISE_VARARGS(self, inst: Instruction) -> None:
if inst.arg == 0:
if not len(self.exn_vt_stack):
msg = ConstantVariable("No active exception to reraise")
exc.raise_observed_exception(RuntimeError, self, args=[msg])
# re-raise the previous exception. Here CPython refers to the exception
# on top of the exception stack
assert len(self.exn_vt_stack)
val = self.exn_vt_stack[-1]
assert self._isinstance_exception(val), val
self._raise_exception_variable(val)
elif inst.arg == 1:
# raise TOS
val = self.stack[-1] # type: ignore[assignment]
self._raise_exception_variable(val)
else:
# raise .. from ...
from_vt = self.pop()
val = self.pop() # type: ignore[assignment]
try:
self._raise_exception_variable(val)
finally:
# Update __cause__/__supppress_context__ in the raised exception
curr_exc = self.exn_vt_stack.get_current_exception()
cause = self._create_exception_type(from_vt)
curr_exc.call_setattr(self, ConstantVariable("__cause__"), cause) # type: ignore[arg-type, union-attr, assignment]
def CLEANUP_THROW(self, inst: Instruction) -> None:
# https://github.com/python/cpython/pull/96010
tos = self.stack[-1]
assert isinstance(tos, ExceptionVariable)
if tos.exc_type is StopIteration:
unimplemented_v2(
gb_type="CLEANUP_THROW with StopIteration",
context="",
explanation="Received StopIteration when handling generator.throw/close. This is not supported.",
hints=[],
)
else:
self.RERAISE(inst)
def RERAISE(self, inst: Instruction) -> None:
# https://docs.python.org/3/library/dis.html#opcode-RERAISE
# Re-raises the exception currently on top of the stack. If oparg is
# non-zero, pops an additional value from the stack which is used to
# set f_lasti of the current frame.
if sys.version_info >= (3, 11):
# RERAISE is currently supported in a narrow case of `raise ... from None`
val = self.pop()
if inst.argval:
# RERAISE 1
_ = self.pop()
self._raise_exception_variable(val)
else:
# RERAISE 0
self.push(val)
self._raise_exception_variable(val)
else:
_exc = self.pop()
val = self.pop()
_tb = self.pop()
self._raise_exception_variable(val)
def _isinstance_exception(self, val: VariableTracker) -> TypeIs[ExceptionVals]:
return isinstance(
val,
(
variables.ExceptionVariable,
UserDefinedExceptionClassVariable,
UserDefinedExceptionObjectVariable,
),
)
def WITH_EXCEPT_START(self, inst: Instruction) -> None:
args: list[VariableTracker] = []
if sys.version_info >= (3, 11):
fn_loc = 4 if sys.version_info < (3, 14) else 5
# At the top of the stack are 4 values:
# - TOP = exc_info()
# - SECOND = previous exception
# - THIRD: lasti of exception in exc_info()
# - FOURTH: the context.__exit__ bound method
# We call FOURTH(type(TOP), TOP, GetTraceback(TOP)).
# Then we push the __exit__ return value.
# In Python 3.14+, there is a NULL placed between the context.__exit__ bound method and the lasti,
# that is, fn is now the 5th from TOS.
assert len(self.stack) >= fn_loc
fn = self.stack[-fn_loc]
val = self.stack[-1]
assert self._isinstance_exception(val)
typ = BuiltinVariable(val.exc_type) # type: ignore[attr-defined, union-attr]
tb = ConstantVariable(None)
if sys.version_info >= (3, 14):
if not isinstance(self.stack[-4], NullVariable):
args.append(self.stack[-4])
else:
assert len(self.stack) >= 7
fn = self.stack[-7]
val = self.stack[-2]
assert self._isinstance_exception(val)
typ = BuiltinVariable(val.exc_type) # type: ignore[attr-defined]
tb = ConstantVariable(None)
args += [typ, val, tb]
self.call_function(fn, args, {})
def exception_handler(self, raised_exception: ObservedException) -> None:
observed_exn_gb_explanation = (
"Dynamo found no exception handler at the top-level compiled function "
"when encountering an exception. Exception will propagate outside the compiled region."
)
def bubble_exception_to_interpreter() -> None:
# Bubble the exception to the interpreter
curr_exc = self.exn_vt_stack.get_current_exception()
dynamo_exc = exc.get_dynamo_observed_exception(curr_exc.python_type())
assert isinstance(raised_exception, dynamo_exc) # sanity check
unimplemented_v2(
gb_type="Observed exception",
context=f"raised exception {curr_exc.python_type_name()}({curr_exc.args})", # type: ignore[union-attr]
explanation=observed_exn_gb_explanation,
hints=[
*graph_break_hints.USER_ERROR,
*graph_break_hints.SUPPORTABLE,
],
)
if sys.version_info >= (3, 11):
exn_tab_entry = self.current_instruction.exn_tab_entry
if exn_tab_entry:
# Implementation is based on https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt
# 1) pop values from the stack until it matches the stack depth
# for the handler
while len(self.stack) > exn_tab_entry.depth:
self.pop()
# 2) if 'lasti' is true, then push the offset that the exception was raised at
if exn_tab_entry.lasti:
self.push(
variables.ConstantVariable(self.current_instruction.offset)
)
# 3) push the exception to the stack
self.push(self.exn_vt_stack.get_current_exception())
# 4) jump to the handler
self.jump(exn_tab_entry) # type: ignore[arg-type]
else:
# No handler found. Bubble the exception to the parent
# instruction translator. We use special exception for this.
self.stack.clear()
if type(self) is InstructionTranslator:
bubble_exception_to_interpreter()
raise raised_exception
else:
if len(self.block_stack):
# base implementation - https://github.com/python/cpython/blob/3.10/Python/ceval.c#L4455
block_stack_entry = self.block_stack.pop()
while block_stack_entry.inst.opname == "EXCEPT_HANDLER":
# TODO(anijain2305) - This is not tested .. unable to create a testcase
# https://github.com/python/cpython/blob/3.10/Python/ceval.c#L1456
self.popn(3)
self.exn_vt_stack.pop()
if len(self.block_stack) == 0:
# No handler found in this frame. Bubble the exception to the parent
# instruction translator.
self.stack.clear()
if type(self) is InstructionTranslator:
unimplemented_v2(
gb_type="Observed exception (EXCEPT_HANDLER)",
context=str(raised_exception),
explanation=observed_exn_gb_explanation
+ " This graph break is unexpected.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
raise raised_exception
block_stack_entry = self.block_stack.pop()
exception_var = self.exn_vt_stack.get_current_exception()
self.exn_vt_stack.move_current_exception_to_stack()
# 1) pop values from the stack until it matches the stack depth
# for the handler
while len(self.stack) > block_stack_entry.stack_index:
self.pop()
# Push a dummy block stack entry of EXCEPT_HANDLER
# https://github.com/python/cpython/blob/3.10/Python/ceval.c#L1456
except_handler_inst = Instruction(1e6, "EXCEPT_HANDLER", None, 0)
self.block_stack.append(
BlockStackEntry(except_handler_inst, None, len(self.stack))
)
# Push old exception
if len(self.exn_vt_stack) >= 2:
old_exception = self.exn_vt_stack[-2]
# Push the old exception on to stack - tb, value, type
# Traceback is currently mapped to UnknownVariable
self.push(variables.UnknownVariable())
self.push(old_exception)
self.push(variables.BuiltinVariable(old_exception.exc_type))
else:
# Push empty exception tb, value, type
self.push(variables.ConstantVariable(None))
self.push(variables.ConstantVariable(None))
self.push(variables.ConstantVariable(None))
# Push new exception - tb, val, type
# Traceback is currently mapped to UnknownVariable
self.push(variables.UnknownVariable())
self.push(exception_var)
self.push(variables.BuiltinVariable(exception_var.exc_type))
# Jump to target
self.jump(block_stack_entry)
else:
# No handler found. Bubble the exception to the parent
# instruction translator. We use special exception for this.
self.stack.clear()
if type(self) is InstructionTranslator:
bubble_exception_to_interpreter()
raise raised_exception
def PUSH_EXC_INFO(self, inst: Instruction) -> None:
# https://docs.python.org/3/library/dis.html#opcode-PUSH_EXC_INFO
# Pops a value from the stack. Pushes the current exception to the top
# of the stack. Pushes the value originally popped back to the stack.
#
# The behavior of this opcode in CPython is a bit different than what it
# is described. It pops a value from the stack, pushes the top of the
# exception stack to the interpreter stack and moves the
# "current exception" to the exception stack.
#
# As an example, suppose the stack is in the following state:
# + stack = [..., ConstantVariable(1), ConstantVariable(2)]
# + current_exception = TypeError
# + exception_stack = [ValueError]
#
# After PUSH_EXC_INFO is executed
# + stack = [..., ConstantVariable(1), ValueError, ConstantVariable(2)]
# + current_exception = None
# + exception_stack = [ValueError, TypeError]
val = self.pop()
if len(self.exn_vt_stack) == 0:
prev_exc: VariableTracker = ConstantVariable(None)
else:
prev_exc = self.exn_vt_stack[-1]
self.push(prev_exc)
self.push(val)
self.exn_vt_stack.move_current_exception_to_stack()
def POP_EXCEPT(self, inst: Instruction) -> None:
if sys.version_info >= (3, 11):
_ = self.pop()
# This exception is handled and therefore we can clear the error indicator
assert len(self.exn_vt_stack)
self.exn_vt_stack.pop()
else:
assert len(self.block_stack) > 0
if self.block_stack[-1].inst.opname != "EXCEPT_HANDLER":
raise AssertionError(
"Bug in Dynamo tracing of exception handling."
"Top of the block stack is not EXCEPT_HANDLER."
)
self.block_stack.pop()
self.popn(3)
# This exception is handled and therefore we can clear the error indicator
assert len(self.exn_vt_stack)
self.exn_vt_stack.pop()
def check_if_exc_matches(self) -> bool:
assert len(self.stack) >= 2
expected_exc_types = self.pop()
if sys.version_info >= (3, 11):
# CHECK_EXC_MATCH (which is used from 3.11 onwards) does not pop.
# This is the description from the disassembly doc
#
# Performs exception matching for ``except``. Tests whether the ``STACK[-2]``
# is an exception matching ``STACK[-1]``. Pops ``STACK[-1]`` and pushes the boolean
# result of the test.
exc_instance = self.stack[-1]
else:
# This is used prior to 3.11 via opcode JUMP_IF_NOT_EXC_MATCH
# There is no documentation but here is the code pointer that does 2 pops
# https://github.com/python/cpython/blob/3.10/Python/ceval.c#L3650-L3665
exc_instance = self.stack.pop()
# Users can check exception in 3 ways
# 1) except NotImplementedError --> BuiltinVariable
# 2) except CustomException --> UserDefinedExceptionClasVariable
# 3) except (NotImplemetedError, AttributeError) -> TupleVariable
if not isinstance(
expected_exc_types,
(
BuiltinVariable,
TupleVariable,
UserDefinedExceptionClassVariable,
UserDefinedExceptionObjectVariable,
),
):
unimplemented_v2(
gb_type="Exception with bad expected type",
context=str(expected_exc_types),
explanation=f"`except ...` has unsupported type {expected_exc_types}.",
hints=[*graph_break_hints.USER_ERROR],
)
if sys.version_info >= (3, 11):
if not self._isinstance_exception(exc_instance):
unimplemented_v2(
gb_type="Caught non-Exception value",
context=str(exc_instance),
explanation=f"Except expects to receive an object of Exception type but received {exc_instance}.",
hints=[*graph_break_hints.USER_ERROR],
)
if isinstance(expected_exc_types, TupleVariable):
expected_types = expected_exc_types.items
else:
expected_types = [
expected_exc_types,
]
for expected_type in expected_types:
if not isinstance(
expected_type,
(
BuiltinVariable,
UserDefinedExceptionObjectVariable,
UserDefinedExceptionClassVariable,
),
):
unimplemented_v2(
gb_type="Exception with non-type expectation",
context=str(expected_type),
explanation=f"`except ...` expects a non-type: {expected_type}.",
hints=[*graph_break_hints.USER_ERROR],
)
if self._isinstance_exception(exc_instance) and issubclass(
exc_instance.exc_type, # type: ignore[union-attr]
expected_type.fn, # type: ignore[attr-defined]
):
return True
elif isinstance(exc_instance, variables.BuiltinVariable) and issubclass(
exc_instance.fn,
# pyrefly: ignore # missing-attribute
expected_type.fn,
):
return True
return False
def CHECK_EXC_MATCH(self, inst: Instruction) -> None:
self.push(variables.ConstantVariable(self.check_if_exc_matches()))
def JUMP_IF_NOT_EXC_MATCH(self, inst: Instruction) -> None:
if not self.check_if_exc_matches():
self.jump(inst)
def COMPARE_OP(self, inst: Instruction) -> None:
if inst.argval == "exception match":
self.CHECK_EXC_MATCH(inst)
else:
self.push(compare_op_handlers[inst.argval](self, self.popn(2), {}))
def GET_ITER(self, inst: Instruction) -> None:
self.call_function(BuiltinVariable(iter), [self.pop()], {})
@break_graph_if_unsupported(push=1)
def CALL_FUNCTION(self, inst: Instruction) -> None:
args = self.popn(inst.argval)
fn = self.pop()
self.call_function(fn, args, {})
@break_graph_if_unsupported(push=1)
def CALL_FUNCTION_EX(self, inst: Instruction) -> None:
kwargsvars: VariableTracker
if inst.argval == 0:
kwargsvars = ConstDictVariable({})
argsvars = self.pop()
elif inst.argval == 1 or sys.version_info >= (3, 14):
# Python 3.14+ removed the argval and replaced it with a possibly NULL kwargs
kwargsvars = self.pop()
if isinstance(kwargsvars, NullVariable):
kwargsvars = ConstDictVariable({})
argsvars = self.pop()
else:
unimplemented_v2(
gb_type="Variadic function call with bad flags",
context=f"flags: {inst.argval}",
explanation=f"Attempted to call a variadic function (CALL_FUNCTION_EX) with bad flags {inst.argval}",
hints=[*graph_break_hints.DYNAMO_BUG],
)
if sys.version_info >= (3, 13):
# 3.13 swapped null and callable
null = self.pop()
assert isinstance(null, NullVariable)
fn = self.pop()
if sys.version_info >= (3, 11) and sys.version_info < (3, 13):
null = self.pop()
assert isinstance(null, NullVariable)
if not isinstance(
# pyrefly: ignore # unbound-name
argsvars,
BaseListVariable,
# pyrefly: ignore # unbound-name
) and argsvars.has_force_unpack_var_sequence(self):
# pyrefly: ignore # unbound-name
argsvars = TupleVariable(argsvars.force_unpack_var_sequence(self))
# Unpack for cases like fn(**obj) where obj is a map
# pyrefly: ignore # unbound-name
if isinstance(kwargsvars, UserDefinedObjectVariable):
kwargsvars = BuiltinVariable.call_custom_dict(self, dict, kwargsvars) # type: ignore[arg-type]
# pyrefly: ignore # unbound-name
if not isinstance(argsvars, BaseListVariable) or not isinstance(
# pyrefly: ignore # unbound-name
kwargsvars,
ConstDictVariable,
):
unimplemented_v2(
gb_type="Variadic function call with bad args/kwargs type",
# pyrefly: ignore # unbound-name
context=f"args type: {typestr(argsvars)}, kwargs type: {typestr(kwargsvars)}",
explanation="Expected args to be a list and kwargs to be a dict",
hints=[*graph_break_hints.USER_ERROR],
)
# Map to a dictionary of str -> VariableTracker
# pyrefly: ignore # unbound-name, missing-attribute
kwargsvars = kwargsvars.keys_as_python_constant()
# pyrefly: ignore # unbound-name, missing-attribute
self.call_function(fn, argsvars.items, kwargsvars)
@break_graph_if_unsupported(push=1)
def CALL_FUNCTION_KW(self, inst: Instruction) -> None:
argnames = self.pop()
args = self.popn(inst.argval)
fn = self.pop()
assert isinstance(argnames, TupleVariable) and argnames.is_python_constant()
argnames = argnames.as_python_constant()
args, kwargs_list = args[: -len(argnames)], args[-len(argnames) :]
kwargs = dict(zip(argnames, kwargs_list))
assert len(kwargs) == len(argnames)
self.call_function(fn, args, kwargs)
def LOAD_METHOD_SUPER(self, inst: Instruction) -> None:
self.CALL_FUNCTION(dataclasses.replace(inst, argval=2))
arg = inst.argval[0]
argval = self.code_options["co_names"][arg]
if sys.version_info < (3, 11):
self._load_attr(argval)
else:
self.LOAD_METHOD(dataclasses.replace(inst, argval=argval))
def LOAD_ATTR_SUPER(self, inst: Instruction) -> None:
self.CALL_FUNCTION(dataclasses.replace(inst, argval=2))
arg = inst.argval[0]
argval = self.code_options["co_names"][arg]
self._load_attr(argval)
def LOAD_METHOD(self, inst: Instruction) -> None:
self._load_attr(inst.argval)
obj = self.pop()
if sys.version_info >= (3, 13):
self.push(obj)
self.PUSH_NULL(inst)
elif sys.version_info >= (3, 11):
# always follow the NULL + fn convention, since if obj
# is actually a method, self is already bound to it, so it
# doesn't need to be passed in as an arg.
self.PUSH_NULL(inst)
self.push(obj)
else:
self.push(obj)
self.push(None)
def CALL_METHOD(self, inst: Instruction) -> None:
args = self.popn(inst.argval)
dummy = self.pop()
assert dummy is None
fn = self.pop()
self.call_function(fn, args, {})
def _load_attr(self, attr: Any) -> None:
obj = self.pop()
result = BuiltinVariable(getattr).call_function(
self, # type: ignore[arg-type]
[obj, ConstantVariable.create(attr)],
{},
)
self.push(result)
def LOAD_ATTR(self, inst: Instruction) -> None:
if sys.version_info >= (3, 12):
# pyrefly: ignore # unsupported-operation
if inst.arg % 2:
self.LOAD_METHOD(inst)
return
self._load_attr(inst.argval)
def STORE_ATTR(self, inst: Instruction) -> None:
speculation = self.speculate()
if speculation.failed(self):
return self.store_attr_graph_break(inst)
val, obj = self.popn(2)
if isinstance(obj, NNModuleVariable) and not isinstance(val, ConstantVariable):
# We don't allow side effects during export on non-constant values
# https://github.com/pytorch/torchdynamo/issues/1475
assert not self.export, (
f"Mutating module attribute {inst.argval} during export."
)
try:
BuiltinVariable(setattr).call_function(
self, # type: ignore[arg-type]
[obj, ConstantVariable.create(inst.argval), val],
{},
)
return
except Unsupported as e:
if not self.should_compile_partial_graph():
raise
log.debug("STORE_ATTR triggered compile", exc_info=True)
e.remove_from_stats()
e.add_to_stats("graph_break")
speculation.fail_and_restart_analysis(self.error_on_graph_break)
def store_attr_graph_break(self, inst: Instruction) -> None:
log_graph_break(self.code_options, reason="STORE_ATTR-caused graph break")
if not self.should_compile_partial_graph():
unimplemented_v2(
gb_type="Should not compile partial graph (STORE_ATTR)",
context="",
explanation="Dynamo has determined when encountering an unsupported "
"STORE_ATTR instruction (i.e. `obj.attr = val`) that it should not compile the partial graph.",
hints=[],
)
all_stack_locals_metadata = self.output.compile_subgraph(
self,
reason=GraphCompileReason("store_attr", [self.frame_summary()]),
stack_pops=2,
)
self.output.add_output_instructions([copy.copy(inst)])
self.popn(2)
self.output.add_output_instructions(
self.codegen_fix_leaf_stack(
all_stack_locals_metadata[0], self.next_instruction
)
+ self.create_call_resume_at(
self.next_instruction,
all_stack_locals_metadata,
)
)
def DELETE_ATTR(self, inst: Instruction) -> None:
obj = self.pop()
BuiltinVariable(delattr).call_function(
self, # type: ignore[arg-type]
[obj, ConstantVariable.create(inst.argval)],
{},
)
@staticmethod
def codegen_return_with_pops(
inst: Instruction, num_stack: int
) -> list[Instruction]:
"""
Debug CPython expects the stack to be empty after the return.
Calling compile_subgraph will push cells and frame values to TOS.
This function will pop those 2 values from the stack before actually returning.
Expects the stack to be:
cells, frame values, current frame stack (0 or 1 values)
Pops cells and frame values, leaving the current frame stack as TOS.
A return instruction is included.
"""
insts = []
# NOTE: Debug CPython expects the stack to be empty after the return.
# Expect the current stack to be in the state
# cells, frame values, current frame stack (0 or 1 values)
assert num_stack <= 1
if num_stack == 1:
insts.extend(create_swap(3))
return_inst = (
create_instruction("RETURN_VALUE")
if inst.opname == "RETURN_VALUE"
else create_instruction("RETURN_CONST", argval=inst.argval)
)
insts.extend(
[create_instruction("POP_TOP"), create_instruction("POP_TOP"), return_inst]
)
return insts
def codegen_fix_leaf_stack(
self, meta: StackLocalsMetadata, resume_inst: Instruction
) -> list[Instruction]:
"""
Fixes the stack values of the current/leaf frame (self).
Expects the TOS to be:
[
frame N locals,
frame N-1 stack + locals,
...,
frame 1 stack + locals
], *(frame N stack (post-unsupported instruction))
Rearranges the TOS to become:
[
frame N stack + locals,
...,
frame 1 stack + locals
]
Args:
- meta: metadata for the leaf frame returned from OutputGraph.compile_subgraph
- resume_inst: if the resume instruction is a return instruction, then don't return any instructions
"""
if resume_inst.opname in ("RETURN_VALUE", "RETURN_CONST"):
return []
# move frame N stack to the frame values list
current_num_stack = len(self.stack) - len(meta.stack_null_idxes)
meta.num_stack = current_num_stack
return [
create_instruction("BUILD_LIST", arg=current_num_stack),
*create_copy(2),
# frame_values, frame N stack, frame_values
create_load_const(0),
create_instruction("BINARY_SUBSCR"),
*create_binary_slice(0, 0, True),
# frame_values[0][0:0] = frame N stack
# frame_values left on top of stack
]
def create_resume(
self,
idx: int,
resume_inst: Instruction,
meta: StackLocalsMetadata,
resume_codes: list[types.CodeType],
cg: PyCodegen,
is_leaf: bool,
handle_inactive_ctx: bool,
) -> tuple[types.CodeType, str]:
"""
Creates the resume function for the frame corresponding to `self`.
Expects the TOS to be:
[frame N cells, ..., frame 1 cells],
[
frame N stack + locals,
...,
frame 1 stack + locals
]
Some additional codegen may happen to prepare the frame stack + locals values for the generated resume function:
- inactive context variables in the stack and locals will be replaced by their types
- if the frame is a leaf frame, prune dead locals
Regardless of codegen, the stack will be left in the same state as before.
Args:
- idx: depth of this frame: 0 corresponds to the leaf frame (frame N), N-1 to the root frame (frame 1).
- resume_inst: the instruction that this frame should resume at
- meta: metadata for this frame returned from OutputGraph.compile_subgraph
- resume_codes: nested resume code objects generated from previous create_resume calls.
- cg: codegen object to output to
- is_leaf: True if `self` corresponds to the leaf frame.
- handle_inactive_ctx: If True, handles inactive context variables as described above. This is necessary
iff the resume function is traced
"""
# Handle inactive context variables.
# The resume function assumes that context variables are the class, NOT the object.
# e.g. torch.set_grad_enabled(True) will be reconstructed as torch.set_grad_enabled
# NOTE: if the unsupported instruction modifies the inactive context variable, it may
# result in silent incorrectness!
if handle_inactive_ctx:
for (j, _), j_orig in zip(meta.stack_ctx_args, meta.stack_ctx_idxes_orig):
# Replace the stack var with the context class
ctx = cast(ContextWrappingVariable, self.stack[j_orig])
# frames[idx][j] = reconstructed_ctx
cg.append_output(create_dup_top())
ctx.reconstruct_type(cg)
cg.extend_output(
[
*create_swap(2),
cg.create_load_const(idx),
cg.create_binary_subscr(),
cg.create_load_const(j),
create_instruction("STORE_SUBSCR"),
]
)
for name, _ in meta.locals_ctx_args:
# Replace the local with the context class
ctx = cast(ContextWrappingVariable, self.symbolic_locals[name])
# frames[idx][meta.num_stack +meta.locals_names[name]] = reconstructed_ctx
cg.append_output(create_dup_top())
ctx.reconstruct_type(cg)
cg.extend_output(
[
*create_swap(2),
cg.create_load_const(idx),
cg.create_binary_subscr(),
cg.create_load_const(meta.num_stack + meta.locals_names[name]),
create_instruction("STORE_SUBSCR"),
]
)
# If the resume instruction is a jump absolute, then resume
# at the target instead. This handles the case where we
# graph break again in a nested function before jump-resuming
# this frame.
if is_jump_absolute(resume_inst):
assert resume_inst.target
resume_inst = resume_inst.target
resume_name = unique_id(f"__resume_at_{resume_inst.offset}")
# More locals may have been pruned in the current/leaf frame
# after the unsupported instruction (e.g. branch).
# There should not be any pruning in the other frames since
# the current instruction there should be a CALL.
if is_leaf:
reads = livevars_analysis(self.instructions, resume_inst)
all_argnames = tuple(
k
for k in self.symbolic_locals.keys()
if k in reads and k not in self.cell_and_freevars()
)
argnames_null_set = set(meta.locals_null_keys)
argnames = tuple(k for k in all_argnames if k not in argnames_null_set)
argnames_null = tuple(k for k in all_argnames if k in argnames_null_set)
# codegen filter for current frame's locals
# current stack state: frames
cg.extend_output(
[
create_dup_top(),
cg.create_load_const(idx),
cg.create_binary_subscr(),
create_dup_top(),
]
)
for arg in argnames:
# current stack state: frames, frames[i], *(prev locals), frames[i]
cg.extend_output(
[
create_dup_top(),
cg.create_load_const(meta.num_stack + meta.locals_names[arg]),
cg.create_binary_subscr(),
*create_swap(2),
],
)
# current stack state: frames, frames[i], *(frame i live locals), frames[i]
cg.extend_output(
[
create_instruction("POP_TOP"),
create_instruction("BUILD_LIST", arg=len(argnames)),
*create_swap(2),
# frames, frames i live locals, frames[i]
*create_binary_slice(meta.num_stack, None, True),
# frames[i][num_stack:] = frame i live locals
]
)
# current stack state: frames
else:
argnames = tuple(meta.locals_names.keys())
argnames_null = tuple(meta.locals_null_keys)
if sys.version_info < (3, 12):
assert len(argnames_null) == 0, "variables should not be NULL in < 3.12"
# compile_subgraph did not codegen any NULLs,
# so we should not count NullVariables
stack_len = len(self.stack) - len(meta.stack_null_idxes)
new_code: types.CodeType = ContinueExecutionCache.lookup(
self.f_code,
self.lineno,
resume_inst.offset,
tuple(b.target.offset for b in self.block_stack),
stack_len,
argnames,
argnames_null,
tuple(b.resume_fn() for b in self.block_stack),
handle_inactive_ctx,
tuple(meta.stack_ctx_args),
tuple(meta.locals_ctx_args),
tuple(meta.stack_null_idxes),
tuple(resume_codes),
)
# Add original GraphModule context to the resume function to handle
# the case of a graph break while tracing a GraphModule
orig_graphmodule_maybe = code_context.get_context(self.f_code).get(
"orig_graphmodule", lambda: None
)()
if orig_graphmodule_maybe is not None:
code_context.get_context(new_code)["orig_graphmodule"] = weakref.ref(
orig_graphmodule_maybe
)
# add resume function to the global scope
if new_code.co_freevars:
# expose code object for debugging purposes
self.output.install_global_unsafe(resume_name, new_code)
package_name = None
else:
# This is safe: we pre-generate a unique name
self.output.install_global_unsafe(
resume_name,
types.FunctionType(new_code, self.f_globals, resume_name),
)
package_name = resume_name
if self.package is not None:
self.package.add_resume_function(
new_code, self.f_globals["__name__"], package_name
)
return new_code, resume_name
def create_call_resume_at(
self,
inst: Instruction,
all_stack_locals_metadata: list[StackLocalsMetadata],
) -> list[Instruction]:
"""
Codegen all resume function(s) from the frame stack starting at `self` and call them.
Assumes that the unsupported instruction has already been run.
Expects the stack to be in the state:
[frame N cells, ..., frame 1 cells],
[
frame N stack + locals,
frame N-1 stack + locals,
...,
frame 1 stack + locals
]
Pops the cells and frame values list from the stack.
Also includes a return instruction (stack expected to be empty after return).
Args:
- inst: the instruction of the current (deepest) frame to resume at
- all_stack_locals_metadata: metadata returned from OutputGraph.compile_subgraph - contains
metadata such as local names, NULL positions, stack length, etc.
"""
self.instruction_pointer = None
current_num_stack = len(self.stack) - len(
all_stack_locals_metadata[0].stack_null_idxes
)
all_stack_locals_metadata[0].num_stack = current_num_stack
if inst.opname in ("RETURN_VALUE", "RETURN_CONST"):
return self.codegen_return_with_pops(
inst, all_stack_locals_metadata[0].num_stack
)
cg = PyCodegen(self.output.root_tx)
cur_tx: Optional[InstructionTranslatorBase] = self
idx = 0
resume_codes: list[types.CodeType] = []
resume_names = []
while cur_tx is not None:
if cur_tx is self:
resume_inst = inst
else:
resume_inst = cur_tx.next_instruction
resume_code, resume_name = cur_tx.create_resume(
idx,
resume_inst,
all_stack_locals_metadata[idx],
resume_codes,
cg,
cur_tx is self,
True,
)
resume_codes.append(resume_code)
resume_names.append(resume_name)
cur_tx = cur_tx.parent
idx += 1
self.codegen_call_resume(resume_codes, resume_names, cg)
return cg.get_instructions() + [create_instruction("RETURN_VALUE")]
@staticmethod
def codegen_call_resume(
resume_codes: list[types.CodeType], resume_names: list[str], cg: PyCodegen
) -> None:
"""
Calls the provided resume functions.
Expects the TOS to be in the state:
[frame N cells, ..., frame 1 cells],
[
frame N stack + locals,
frame N-1 stack + locals,
...,
frame 1 stack + locals
]
Pops the cells and frame values, leaving the result of calling the resume functions on TOS.
Args:
- resume_codes: list of resume function code objects to call
- resume_names: list of the corresponding names of the resume functions
- cg: PyCodegen object to output instructions to
"""
# NOTE: We will load cells as we load resume functions
# load resume functions except the root's
cg.extend_output(create_copy(2))
for i, (name, code) in enumerate(zip(resume_names, resume_codes)):
if i == len(resume_names) - 1:
break
# stack: cells, frames, *(resume 1, ...), cells
if code.co_freevars:
cg.extend_output(
[
create_dup_top(),
cg.create_load_const(i),
cg.create_binary_subscr(),
]
)
cg.make_function_with_closure(name, code)
else:
cg.extend_output(cg.load_function_name(name, False, 0))
cg.extend_output(create_swap(2))
cg.extend_output(
[
create_instruction("POP_TOP"),
create_instruction("BUILD_LIST", arg=len(resume_codes) - 1),
]
)
# stack: cells, frames, [resume 1, ..., resume N - 1]
# load root resume function
cg.extend_output(create_swap(3))
if resume_codes[-1].co_freevars:
cg.extend_output(
[
cg.create_load_const(-1),
cg.create_binary_subscr(),
]
)
cg.make_function_with_closure(resume_names[-1], resume_codes[-1])
cg.extend_output(
[
*create_rot_n(3),
]
)
else:
cg.extend_output(
[
create_instruction("POP_TOP"),
*cg.load_function_name(resume_names[-1], False),
*create_rot_n(3),
]
)
# resume 1, [resume N, ..., resume 2], frames
# load top level-frame; final stack state should be:
# first resume function (+ NULL),
# [
# [resume N, ..., resume 2],
# [
# frame N stack + locals,
# ...,
# frame 2 stack + locals,
# ], *(frame 1 stack + locals)
# ]
cg.extend_output(
[
create_dup_top(),
create_dup_top(),
# frames, frames, frames
cg.create_load_const(-1),
cg.create_binary_subscr(),
# frames, frames, frames[-1]
*create_swap(2),
# frames, frames[-1], frames
cg.create_load_const(-1),
create_instruction("DELETE_SUBSCR"),
]
)
# TOS: resumes, frames (popped), frame 1 stack + locals
cg.extend_output(
[
*create_rot_n(3),
create_instruction("BUILD_LIST", arg=2),
*create_swap(2),
# [resumes, frames (popped)], frame 1 stack + locals
create_instruction("LIST_EXTEND", arg=1),
]
)
# TOS: [resumes, frames, *(frame 1 stack + locals)]
cg.extend_output(
[
*create_call_function_ex(False, True),
]
)
def should_compile_partial_graph(self) -> bool:
if sys.version_info >= (3, 11):
# Do not compile if current instruction's block is not the top with block
entry = self.current_instruction.exn_tab_entry
if entry and (
not self.block_stack or entry.target is not self.block_stack[-1].target
):
return False
return (
all(b.can_restore() for b in self.block_stack)
and not self.one_graph
and not self.error_on_graph_break
and not self.is_tracing_resume_prologue
and not self.active_generic_context_managers
)
@break_graph_if_unsupported(push=0)
def STORE_SUBSCR(self, inst: Instruction) -> None:
val, obj, key = self.popn(3)
obj.call_method(self, "__setitem__", [key, val], {})
def DELETE_SUBSCR(self, inst: Instruction) -> None:
obj, key = self.popn(2)
obj.call_method(self, "__delitem__", [key], {})
def BUILD_TUPLE(self, inst: Instruction) -> None:
items = self.popn(inst.argval)
self.push(TupleVariable(items))
def BUILD_SLICE(self, inst: Instruction) -> None:
items = self.popn(inst.argval)
self.push(SliceVariable(items, tx=self))
def BUILD_LIST(self, inst: Instruction) -> None:
items = self.popn(inst.argval)
self.push(ListVariable(items, mutation_type=ValueMutationNew()))
def BUILD_SET(self, inst: Instruction) -> None:
if config.inject_BUILD_SET_unimplemented_TESTING_ONLY:
unimplemented_v2(
gb_type="missing BUILD_SET handler",
context="",
explanation="Missing BUILD_SET bytecode handler (for testing purposes).",
hints=[],
)
items = self.popn(inst.argval)
new_set = SetVariable(items, mutation_type=ValueMutationNew())
self.push(new_set)
def BUILD_LIST_UNPACK(self, inst: Instruction, cls: type = ListVariable) -> None:
seqs = self.popn(inst.argval)
items = []
for seq in seqs:
try:
items.extend(seq.force_unpack_var_sequence(self))
except NotImplementedError:
unimplemented_v2(
gb_type="Failed to unpack object for BUILD_LIST_UNPACK",
context=str(seq),
explanation=f"{seq} cannot be unpacked into a list for the BUILD_LIST_UNPACK "
"bytecode (`[*x, *y, ...]`).",
hints=[*graph_break_hints.USER_ERROR],
)
self.push(cls(items, mutation_type=ValueMutationNew()))
def BUILD_TUPLE_UNPACK(self, inst: Instruction) -> None:
self.BUILD_LIST_UNPACK(inst, cls=TupleVariable)
BUILD_TUPLE_UNPACK_WITH_CALL = BUILD_TUPLE_UNPACK
def BUILD_MAP(self, inst: Instruction) -> None:
items = self.popn(inst.argval * 2)
d = dict(zip(items[::2], items[1::2]))
self.push(ConstDictVariable(d, mutation_type=ValueMutationNew()))
def BUILD_MAP_UNPACK(self, inst: Instruction) -> None:
items = self.popn(inst.argval)
# ensure everything is a dict
items = [BuiltinVariable(dict).call_function(self, [x], {}) for x in items] # type: ignore[arg-type]
result: dict[Any, Any] = {}
for x in items:
assert isinstance(x, ConstDictVariable)
result.update(x.items)
self.push(
ConstDictVariable(
result,
mutation_type=ValueMutationNew(),
)
)
BUILD_MAP_UNPACK_WITH_CALL = BUILD_MAP_UNPACK
def BUILD_CONST_KEY_MAP(self, inst: Instruction) -> None:
keys = self.pop()
values = self.popn(inst.argval)
assert isinstance(keys, TupleVariable)
assert keys.is_python_constant()
keys = keys.force_unpack_var_sequence(self)
assert len(keys) == len(values)
self.push(
ConstDictVariable(
dict(zip(keys, values)),
mutation_type=ValueMutationNew(),
)
)
def MAP_ADD(self, inst: Instruction) -> None:
k, v = self.popn(2)
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg].realize()
assert isinstance(obj, ConstDictVariable)
obj.call_method(self, "__setitem__", (k, v), {}) # type: ignore[arg-type]
def SET_ADD(self, inst: Instruction) -> None:
v = self.pop()
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg]
assert isinstance(obj, SetVariable)
assert obj.is_mutable()
obj.call_method(self, "add", [v], {})
def SET_UPDATE(self, inst: Instruction) -> None:
v = self.pop()
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg]
assert isinstance(obj, SetVariable)
assert obj.is_mutable()
obj.call_method(self, "update", [v], {})
def LIST_APPEND(self, inst: Instruction) -> None:
v = self.pop()
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg].realize()
assert isinstance(obj, ListVariable)
assert obj.is_mutable()
self.output.side_effects.mutation(obj)
obj.items.append(v)
def MAKE_FUNCTION(self, inst: Instruction) -> None:
flags = inst.arg
if sys.version_info < (3, 11):
fn_name = self.pop()
code = self.pop()
if sys.version_info >= (3, 11):
# MAKE_FUNCTION behavior actually changed in 3.11, see
# https://github.com/python/cpython/pull/93189/
assert hasattr(code.value, "co_qualname") # type: ignore[attr-defined]
fn_name = ConstantVariable.create(value=code.value.co_qualname) # type: ignore[attr-defined]
defaults = None
closure = None
annotations = None
kwdefaults = None
if sys.version_info < (3, 13):
# in 3.13, this is handled in SET_FUNCTION_ATTRIBUTE
if flags is not None:
if flags & 0x08:
closure = self.pop()
if flags & 0x04:
annotations = self.pop()
if flags & 0x02:
kwdefaults = self.pop()
if flags & 0x01:
defaults = self.pop()
self.push(
NestedUserFunctionVariable(
fn_name,
code,
self.f_globals,
defaults,
kwdefaults,
annotations,
closure,
)
)
def UNPACK_SEQUENCE(self, inst: Instruction) -> None:
seq = self.pop()
if isinstance(seq, TensorVariable):
val = seq.unpack_var_sequence(self, idxes=range(inst.argval)) # type: ignore[arg-type]
elif isinstance(seq, GetAttrVariable) and isinstance(seq.obj, TensorVariable):
# x, y = a.shape
proxy = getattr(seq.obj.as_proxy(), seq.name)
val = [wrap_fx_proxy(self, proxy[i]) for i in range(inst.argval)]
elif seq.has_force_unpack_var_sequence(self):
val = seq.force_unpack_var_sequence(self)
else:
unimplemented_v2(
gb_type="Failed to unpack object for UNPACK_SEQUENCE",
context=str(seq),
explanation=f"{seq} cannot be unpacked into a list for the UNPACK_SEQUENCE bytecode "
"(i.e. `a, b, c = d`).",
hints=[*graph_break_hints.USER_ERROR],
)
# pyrefly: ignore # unbound-name
if len(val) != inst.argval:
unimplemented_v2(
gb_type="Length mismatch when unpacking object for UNPACK_SEQUENCE",
# pyrefly: ignore # unbound-name
context=f"expected length: {inst.argval}, actual: {len(val)}",
explanation=f"{seq} unpacked to a list for the UNPACK_SEQUENCE bytecode "
"(i.e. `a, b, c = d`) with unexpected length.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
# pyrefly: ignore # unbound-name
for i in reversed(val):
self.push(i)
def UNPACK_EX(self, inst: Instruction) -> None:
assert 0 <= inst.argval <= 0xFFFF
prefix = inst.argval & 0xFF # low byte
suffix = inst.argval >> 8 # high byte
seq = self.pop()
if seq.has_force_unpack_var_sequence(self):
vals = list(seq.force_unpack_var_sequence(self))
assert len(vals) >= prefix + suffix
vals_prefix = vals[:prefix]
vals_list = vals[prefix : len(vals) - suffix]
vals_suffix = vals[len(vals) - suffix :]
for item in reversed(vals_suffix):
self.push(item)
self.push(TupleVariable(vals_list))
for item in reversed(vals_prefix):
self.push(item)
else:
unimplemented_v2(
gb_type="Failed to unpack object for UNPACK_EX",
context=str(seq),
explanation=f"{seq} cannot be unpacked into a list for the UNPACK_EX bytecode.",
hints=[*graph_break_hints.USER_ERROR],
)
@break_graph_if_unsupported(push=0)
def graph_break_on_leaf_function(self, inst: Instruction) -> None:
if self.is_leaf_tracer:
unimplemented_v2(
gb_type="Forced graph break on leaf function",
context="",
explanation="Forced graph break for nested graph break testing purposes",
hints=[
"Set torch._dynamo.config.debug_force_graph_break_on_leaf_return = False",
],
)
def NOP(self, inst: Instruction) -> None:
# Dynamo-specific testing behavior
if inst.argval == "GRAPH_BREAK_IF_LEAF":
self.graph_break_on_leaf_function(inst)
def POP_TOP(self, inst: Instruction) -> None:
self.pop()
def ROT_TWO(self, inst: Instruction) -> None:
a = self.pop()
b = self.pop()
self.push(a)
self.push(b)
def ROT_THREE(self, inst: Instruction) -> None:
a = self.pop()
b = self.pop()
c = self.pop()
self.push(a)
self.push(c)
self.push(b)
def ROT_FOUR(self, inst: Instruction) -> None:
a = self.pop()
b = self.pop()
c = self.pop()
d = self.pop()
self.push(a)
self.push(d)
self.push(c)
self.push(b)
def DUP_TOP(self, inst: Instruction) -> None:
a = self.pop()
self.push(a)
self.push(a)
def DUP_TOP_TWO(self, inst: Instruction) -> None:
a = self.pop()
b = self.pop()
self.push(b)
self.push(a)
self.push(b)
self.push(a)
def _convert_value(self, value: VariableTracker, flag: int) -> VariableTracker:
if flag == 1:
return BuiltinVariable(str).call_function(self, [value], {}) # type: ignore[arg-type]
elif flag == 2:
return BuiltinVariable(repr).call_function(self, [value], {}) # type: ignore[arg-type]
elif flag == 3:
return BuiltinVariable(ascii).call_function(self, [value], {}) # type: ignore[arg-type]
return value
def _format_value(self, fmt_spec: VariableTracker, flags: int) -> None:
value = self.pop()
if isinstance(value, SymNodeVariable):
from torch._dynamo.variables.lazy import (
LazySymNodeFormatString,
LazyVariableTracker,
)
value = LazyVariableTracker.create(
LazySymNodeFormatString(value, fmt_spec), source=value.source
)
self.push(value)
return
value = self._convert_value(value, flags & 0x03)
fmt_var = ConstantVariable.create("{:" + fmt_spec.as_python_constant() + "}")
self.call_function(BuiltinVariable(str.format), [fmt_var, value], {})
def FORMAT_VALUE(self, inst: Instruction) -> None:
flags = inst.arg
assert flags is not None
if (flags & 0x04) == 0x04:
fmt_spec = self.pop()
else:
fmt_spec = ConstantVariable.create("")
return self._format_value(fmt_spec, flags)
def BUILD_STRING(self, inst: Instruction) -> None:
format_string_parts: list[str] = []
args: list[VariableTracker] = []
kwargs: dict[str, VariableTracker] = {}
assert inst.arg is not None
for part in self.popn(inst.arg):
if isinstance(part, ConstantVariable):
format_string_parts.append("{}")
args.append(part)
elif isinstance(part, variables.StringFormatVariable):
format_string_parts.append(part.format_string)
args.extend(part.sym_args)
if set(kwargs.keys()) & set(part.sym_kwargs.keys()):
unimplemented_v2(
gb_type="BUILD_STRING key conflict",
context=f"format_string_parts: {format_string_parts}, kwargs: {kwargs}, part.sym_kwargs: {part.sym_kwargs}",
explanation="Failed to build format string due to key conflict",
hints=[*graph_break_hints.USER_ERROR],
)
kwargs.update(part.sym_kwargs)
else:
unimplemented_v2(
gb_type="BUILD_STRING type error",
context=str(part),
explanation="Format string part type is not correct - expected constant or format string.",
hints=[*graph_break_hints.USER_ERROR],
)
self.push(
variables.StringFormatVariable.create(
"".join(format_string_parts), args, kwargs
)
)
def IS_OP(self, inst: Instruction) -> None:
assert inst.argval == 0 or inst.argval == 1
if inst.argval == 0:
new_argval = "is"
else:
new_argval = "is not"
new_inst = create_instruction("COMPARE_OP", argval=new_argval)
self.COMPARE_OP(new_inst)
def CONTAINS_OP(self, inst: Instruction) -> None:
assert inst.argval == 0 or inst.argval == 1
left, right = self.popn(2)
op = inst.argval
try:
self.push(right.call_method(self, "__contains__", [left], {}))
except (
# right.__contains__ can raise TypeError
exc.ObservedTypeError,
# Ideally we should only capture TypeError here but some VTs don't
# implement hasattr(vt, "__contains__") entirely
Unsupported,
) as excp: # object doesn't support __contains__
# Use __iter__ as fallback
if isinstance(excp, Unsupported):
excp.remove_from_stats()
self.push(
self.inline_user_function_return(
VariableTracker.build(self, impl_CONTAINS_OP_fallback),
[left, right],
{},
)
)
if op == 1:
self.UNARY_NOT(inst)
def LIST_EXTEND(self, inst: Instruction) -> None:
v = self.pop()
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg]
assert isinstance(obj, ListVariable)
assert obj.is_mutable()
obj.call_method(self, "extend", [v], {})
def LIST_TO_TUPLE(self, inst: Instruction) -> None:
self.push(BuiltinVariable(tuple).call_function(self, [self.pop()], {})) # type: ignore[arg-type]
def STOPITERATION_ERROR(self, inst: Instruction) -> None:
# wrap the generator body in a try: ... except StopIteration: ... which
# converts the StopIteration into a RuntimeError
# https://peps.python.org/pep-0479/
# https://github.com/python/cpython/pull/99006
# https://github.com/python/cpython/commit/28187141cc34063ef857976ddbca87ba09a882c2
val = self.stack[-1]
assert self._isinstance_exception(val)
if val.exc_type is StopIteration: # type: ignore[union-attr]
new_val = variables.BuiltinVariable(RuntimeError).call_function(
self, # type: ignore[arg-type]
[ConstantVariable("generator raised StopIteration")],
{},
)
new_val.call_setattr(self, ConstantVariable("__context__"), val) # type: ignore[attr-defined]
new_val.call_setattr(self, ConstantVariable("__cause__"), val) # type: ignore[attr-defined]
self.stack[-1] = new_val
def DICT_MERGE(self, inst: Instruction) -> None:
v = self.pop()
assert inst.argval > 0
assert inst.arg is not None
obj = self.stack[-inst.arg].realize()
assert isinstance(obj, ConstDictVariable)
assert obj.is_mutable()
obj.call_method(self, "update", [v], {})
DICT_UPDATE = DICT_MERGE
def GEN_START(self, inst: Instruction) -> None:
self.pop()
def GET_LEN(self, inst: Instruction) -> None:
tos = self.stack[-1]
if tos.is_python_constant():
self.push(ConstantVariable.create(len(tos.as_python_constant())))
else:
self.push(tos.call_method(self, "__len__", [], {}))
def MATCH_MAPPING(self, inst: Instruction) -> None:
tos = self.stack[-1]
assert isinstance(tos, ConstDictVariable)
if isinstance(tos.items, collections.abc.Mapping):
self.push(ConstantVariable.create(True))
else:
self.push(ConstantVariable.create(False))
def MATCH_SEQUENCE(self, inst: Instruction) -> None:
tos = self.stack[-1]
assert tos.is_python_constant()
tos_value = tos.as_python_constant()
if isinstance(tos_value, collections.abc.Sequence) and not isinstance(
tos_value, (str, bytes, bytearray)
):
self.push(ConstantVariable.create(True))
else:
self.push(ConstantVariable.create(False))
def MATCH_KEYS(self, inst: Instruction) -> None:
tos = self.stack[-1]
tos1 = self.stack[-2]
assert isinstance(tos1, ConstDictVariable)
if all(k in tos1 for k in tos): # type: ignore[attr-defined]
self.push(TupleVariable([tos1.getitem_const(self, k) for k in tos])) # type: ignore[attr-defined,arg-type]
if sys.version_info < (3, 11):
self.push(ConstantVariable.create(True))
else:
self.push(ConstantVariable.create(None))
if sys.version_info < (3, 11):
self.push(ConstantVariable.create(False))
def LOAD_ASSERTION_ERROR(self, inst: Instruction) -> None:
self.push(self.load_builtin_from_argval("AssertionError"))
def LOAD_BUILD_CLASS(self, inst: Instruction) -> None:
self.push(self.load_builtin_from_argval("__build_class__"))
UNARY_POSITIVE = stack_op(operator.pos)
UNARY_NEGATIVE = stack_op(operator.neg)
UNARY_NOT = stack_op(operator.not_)
UNARY_INVERT = stack_op(operator.invert)
BINARY_POWER = stack_op(operator.pow)
BINARY_MULTIPLY = stack_op(operator.mul)
BINARY_MATRIX_MULTIPLY = stack_op(operator.matmul)
BINARY_FLOOR_DIVIDE = stack_op(operator.floordiv)
BINARY_TRUE_DIVIDE = stack_op(operator.truediv)
BINARY_MODULO = stack_op(operator.mod)
BINARY_REMAINDER = stack_op(operator.mod)
BINARY_ADD = stack_op(operator.add)
BINARY_SUBTRACT = stack_op(operator.sub)
BINARY_SUBSCR = break_graph_if_unsupported(push=1)(stack_op(operator.getitem))
BINARY_LSHIFT = stack_op(operator.lshift)
BINARY_RSHIFT = stack_op(operator.rshift)
BINARY_AND = stack_op(operator.and_)
BINARY_OR = stack_op(operator.or_)
BINARY_XOR = stack_op(operator.xor)
INPLACE_POWER = stack_op(operator.ipow)
INPLACE_MULTIPLY = stack_op(operator.imul)
INPLACE_MATRIX_MULTIPLY = stack_op(operator.imatmul)
INPLACE_FLOOR_DIVIDE = stack_op(operator.ifloordiv)
INPLACE_TRUE_DIVIDE = stack_op(operator.itruediv)
INPLACE_MODULO = stack_op(operator.imod)
INPLACE_REMAINDER = stack_op(operator.imod)
INPLACE_ADD = stack_op(operator.iadd)
INPLACE_SUBTRACT = stack_op(operator.isub)
INPLACE_LSHIFT = stack_op(operator.ilshift)
INPLACE_RSHIFT = stack_op(operator.irshift)
INPLACE_AND = stack_op(operator.iand)
INPLACE_XOR = stack_op(operator.ixor)
INPLACE_OR = stack_op(operator.ior)
# 3.11 opcodes
def RESUME(self, inst: Instruction) -> None:
if inst.arg == 0:
self.append_prefix_inst(inst)
self.accept_prefix_inst = False
else:
assert not self.accept_prefix_inst
if sys.version_info >= (3, 11):
def BINARY_OP(self, inst: Instruction) -> None:
assert inst.arg is not None
return _binary_op_lookup[inst.arg](self, inst)
def PRECALL(self, inst: Instruction) -> None:
pass
def KW_NAMES(self, inst: Instruction) -> None:
kw_names = self.code_options["co_consts"][inst.arg]
assert isinstance(kw_names, tuple)
for name in kw_names:
assert isinstance(name, str)
assert self.kw_names is None
self.kw_names = ConstantVariable.create(value=kw_names) # type: ignore[assignment]
def PUSH_NULL(self, inst: Instruction) -> None:
self.push(NullVariable())
def _call(self, inst: Instruction, call_kw: bool = False) -> None:
# see https://docs.python.org/3.11/library/dis.html#opcode-CALL
# for convention
if call_kw:
# TOS is kw_names for CALL_KW instruction
assert sys.version_info >= (3, 13)
kw_names = self.pop()
assert isinstance(kw_names, TupleVariable) and kw_names.is_python_constant()
kw_names = kw_names.as_python_constant()
else:
kw_names = self.kw_names.value if self.kw_names else ()
assert inst.arg is not None
contents = self.popn(inst.arg + 2)
if sys.version_info >= (3, 13):
# NULL and callable swapped
fn = contents[0]
args = [] if isinstance(contents[1], NullVariable) else [contents[1]]
else:
if isinstance(contents[0], NullVariable):
fn = contents[1]
args = []
else:
fn = contents[0]
args = [contents[1]]
if kw_names:
# pyrefly: ignore # bad-argument-type
args = args + contents[2 : -len(kw_names)]
# pyrefly: ignore # bad-argument-type
kwargs_list = contents[-len(kw_names) :]
# pyrefly: ignore # no-matching-overload
kwargs = dict(zip(kw_names, kwargs_list))
# pyrefly: ignore # bad-argument-type
assert len(kwargs) == len(kw_names)
else:
args = args + contents[2:]
kwargs = {}
try:
# if call_function fails, need to set kw_names to None, otherwise
# a subsequent call may have self.kw_names set to an old value
self.call_function(fn, args, kwargs)
finally:
self.kw_names = None
@break_graph_if_unsupported(push=1)
def CALL(self, inst: Instruction) -> None:
self._call(inst)
def COPY(self, inst: Instruction) -> None:
assert inst.arg is not None
self.push(self.stack[-inst.arg])
def SWAP(self, inst: Instruction) -> None:
assert inst.arg is not None
self.stack[-1], self.stack[-inst.arg] = self.stack[-inst.arg], self.stack[-1]
JUMP_BACKWARD = jump
JUMP_BACKWARD_NO_INTERRUPT = jump
POP_JUMP_FORWARD_IF_TRUE = generic_jump(operator.truth, False)
POP_JUMP_BACKWARD_IF_TRUE = generic_jump(operator.truth, False)
POP_JUMP_FORWARD_IF_FALSE = generic_jump(operator.not_, False)
POP_JUMP_BACKWARD_IF_FALSE = generic_jump(operator.not_, False)
def CACHE(self, inst: Instruction) -> None:
pass
def BEFORE_WITH(self, inst: Instruction) -> None:
self.setup_or_before_with(inst)
def enter_ctx(
self,
ctx: Union[ContextWrappingVariable, GenericContextWrappingVariable],
inst: Instruction,
) -> VariableTracker:
if (
isinstance(ctx, GenericContextWrappingVariable)
and not ctx.supports_graph_breaks()
):
self.active_generic_context_managers.append(ctx)
if sys.version_info >= (3, 11):
# See update_block_stack/create_resume for block stack details.
# Only push a block if the current instruction's block is a
# with block that is not nested in a try block - that is, the current
# instruction's block target is the same as the top block's target.
if inst.exn_tab_entry and (
not self.block_stack
or inst.exn_tab_entry.target is not self.block_stack[-1].target
):
target = None
else:
assert self.next_instruction.exn_tab_entry is not None
target = self.next_instruction.exn_tab_entry.target
else:
target = inst.target
if target:
if isinstance(self, InstructionTranslator) or config.nested_graph_breaks:
self.block_stack.append(
BlockStackEntry(inst, target, len(self.stack), ctx)
)
else:
self.block_stack.append(BlockStackEntry(inst, target, len(self.stack)))
return ctx.enter(self)
@staticmethod
def unsupported_ctx_graph_break(ctx: VariableTracker) -> NoReturn:
unimplemented_v2(
gb_type="Unsupported context manager",
context=f"Attempted SETUP_WITH/BEFORE_WITH/LOAD_SPECIAL on {ctx}",
explanation=f"Dynamo does not know how to enter a `{ctx.python_type_name()}` context manager.",
hints=[
"Avoid using the unsupported context manager.",
"If the context manager seems like it should be supported (e.g. torch.set_grad_enabled), then "
"it may be the case that it was created outside the compiled region, which Dynamo does not support. "
"Supported context managers can cross graph break boundaries only if they are local non-closure "
"variables, or are intermediate values.",
"File an issue to PyTorch. Simple context managers can potentially be supported, "
"but note that context managers can't be supported in general",
],
)
def setup_or_before_with(self, inst: Instruction) -> None:
ctx = self.pop()
if not isinstance(
ctx, (ContextWrappingVariable, GenericContextWrappingVariable)
):
self.unsupported_ctx_graph_break(ctx)
# Need this redundant check for mypy
assert isinstance(
ctx, (ContextWrappingVariable, GenericContextWrappingVariable)
)
self.push(WithExitFunctionVariable(ctx, inst.target))
self.push(self.enter_ctx(ctx, inst))
def append_prefix_inst(self, inst: Instruction) -> None:
assert self.accept_prefix_inst
self.prefix_insts.append(inst)
def MAKE_CELL(self, inst: Instruction) -> None:
if sys.version_info >= (3, 12) and not self.accept_prefix_inst:
# In 3.12+, MAKE_CELL is not longer necessarily a prefix instruction.
# It can be generated by inlined comprehensions.
assert isinstance(self.symbolic_locals[inst.argval], NullVariable)
self.symbolic_locals[inst.argval] = (
self.output.side_effects.track_cell_new()
)
else:
self.append_prefix_inst(inst)
def COPY_FREE_VARS(self, inst: Instruction) -> None:
self.append_prefix_inst(inst)
def RETURN_GENERATOR(self, inst: Instruction) -> None:
self.append_prefix_inst(inst)
# 3.12 opcodes
# BINARY/STORE_SLICE opcodes are broken down into
# BUILD_SLICE 2 and BINARY/STORE_SUBSCR
def END_FOR(self, inst: Instruction) -> None:
if sys.version_info >= (3, 13):
self.pop()
else:
self.popn(2)
def LOAD_FAST_CHECK(self, inst: Instruction) -> None:
if istype(self.symbolic_locals.get(inst.argval, None), NullVariable):
unimplemented_v2(
gb_type="LOAD_FAST_CHECK on uninitialized variable",
context=inst.argval,
explanation=f"Attempted to load uninitialized local variable {inst.argval}",
hints=[*graph_break_hints.USER_ERROR],
)
self.LOAD_FAST(inst)
def LOAD_FAST_AND_CLEAR(self, inst: Instruction) -> None:
if inst.argval not in self.symbolic_locals:
self.push(NullVariable())
else:
self.LOAD_FAST(inst)
self.symbolic_locals[inst.argval] = NullVariable()
def LOAD_SUPER_ATTR(self, inst: Instruction) -> None:
self.CALL_FUNCTION(dataclasses.replace(inst, argval=2))
assert inst.arg is not None
if inst.arg & 1:
self.LOAD_METHOD(inst)
else:
self._load_attr(inst.argval)
def CALL_INTRINSIC_1(self, inst: Instruction) -> None:
if inst.argval == 3:
# INTRINSIC_STOPITERATION_ERROR
self.STOPITERATION_ERROR(inst)
elif inst.argval == 5:
# INTRINSIC_UNARY_POSITIVE
self.UNARY_POSITIVE(inst)
elif inst.argval == 6:
# INTRINSIC_LIST_TO_TUPLE
self.push(TupleVariable(self.pop().force_unpack_var_sequence(self)))
else:
unimplemented_v2(
gb_type="Missing CALL_INTRINSIC_1 handler",
context=f"CALL_INTRINSIC_1 operand: {inst.argval}",
explanation=f"No handler implemented for CALL_INTRINSIC_1 {inst.argval} instruction.",
hints=[*graph_break_hints.SUPPORTABLE],
)
def END_SEND(self, inst: Instruction) -> None:
tos = self.pop()
self.pop()
self.push(tos)
# 3.13 opcodes
# fused instructions LOAD_FAST_LOAD_FAST, STORE_FAST_STORE_FAST, STORE_FAST_LOAD_FAST
# are broken down.
@break_graph_if_unsupported(push=1)
def CALL_KW(self, inst: Instruction) -> None:
self._call(inst, call_kw=True)
def TO_BOOL(self, inst: Instruction) -> None:
# TO_BOOL only precedes a conditional jump or UNARY_NOT (see compile.c in CPython)
# So we can skip this instruction as long as we remember to codegen a TO_BOOL
# before conditional jumps/UNARY_NOT.
assert self.next_instruction.opname in (
"POP_JUMP_IF_TRUE",
"POP_JUMP_IF_FALSE",
"UNARY_NOT",
)
def SET_FUNCTION_ATTRIBUTE(self, inst: Instruction) -> None:
flags = inst.arg
assert flags is not None
fn = self.pop()
assert isinstance(fn, NestedUserFunctionVariable)
attr = self.pop()
if flags & 0x08:
fn.closure = attr
elif flags & 0x04:
fn.annotations = attr
elif flags & 0x02:
fn.kwdefaults = attr
elif flags & 0x01:
fn.defaults = attr
self.push(fn)
def CONVERT_VALUE(self, inst: Instruction) -> None:
self.push(self._convert_value(self.pop(), inst.argval))
def FORMAT_SIMPLE(self, inst: Instruction) -> None:
self._format_value(ConstantVariable.create(""), 0)
def FORMAT_WITH_SPEC(self, inst: Instruction) -> None:
self._format_value(self.pop(), 0)
# 3.14 opcodes
LOAD_FAST_BORROW = LOAD_FAST
NOT_TAKEN = NOP
POP_ITER = POP_TOP
# See
# https://github.com/python/cpython/blob/805e3368d6d07e58430654d1365283924fdf4143/Python/ceval.c#L559
# for the LOAD_SPECIAL table - make sure it matches for Python 3.14+
_load_special_names = (
"__enter__",
"__exit__",
"__aenter__",
"__aexit__",
)
def LOAD_SPECIAL(self, inst: Instruction) -> None:
assert isinstance(inst.arg, int), "expected LOAD_SPECIAL arg to be set to int"
attr = self._load_special_names[inst.arg]
if attr in ("__enter__", "__exit__"):
ctx = self.pop()
if not isinstance(
ctx, (ContextWrappingVariable, GenericContextWrappingVariable)
):
self.unsupported_ctx_graph_break(ctx)
# Need this redundant check for mypy
assert isinstance(
ctx, (ContextWrappingVariable, GenericContextWrappingVariable)
)
if attr == "__enter__":
self.push(WithEnterFunctionVariable(ctx))
self.PUSH_NULL(inst)
else:
# WithExitFunctionVariable doesn't really do anything with target for 3.11+
self.push(WithExitFunctionVariable(ctx, None))
self.PUSH_NULL(inst)
else:
# Implementation is similar to LOAD_METHOD for 3.13+
self._load_attr(attr)
obj = self.pop()
self.push(obj)
self.PUSH_NULL(inst)
def LOAD_SMALL_INT(self, inst: Instruction) -> None:
self.push(ConstantVariable.create(inst.argval))
# See
# https://github.com/python/cpython/blob/7519ac294fc5c4fd7fb9cb8dc0edc960688cf887/Python/pylifecycle.c#L814
# for the common constants - make sure it matches for Python 3.14+.
# The common constants are all attributes of `builtins`.
_common_constants = (
"AssertionError",
"NotImplementedError",
"tuple",
"all",
"any",
)
def LOAD_COMMON_CONSTANT(self, inst: Instruction) -> None:
assert isinstance(inst.arg, int), (
"expected LOAD_COMMON_CONSTANT arg to be set to int"
)
self.push(self.load_builtin_from_argval(self._common_constants[inst.arg]))
def is_non_empty_graph(self) -> bool:
if self.output.count_calls() > 1:
# perf optimization only
self.is_non_empty_graph = lambda: True # type: ignore[method-assign]
return True
return False
def format_frame_summary(
self, additional_stack_frames: Optional[list[Any]] = None
) -> str:
if additional_stack_frames is None:
additional_stack_frames = []
return "".join(
traceback.format_list(
[self.frame_summary()] + list(reversed(additional_stack_frames))
)
)
def frame_summary(self) -> traceback.FrameSummary:
return traceback.FrameSummary(
getattr(self.f_code, "co_filename", "<unknown>"),
self.lineno,
getattr(self.f_code, "co_name", "<unknown>"),
lookup_line=False,
)
def is_co_filename_from_nn_modules(self) -> bool:
filename = getattr(self.f_code, "co_filename", "<unknown>")
nn_modules_pattern = re.compile(r".*torch/nn/modules.*")
return nn_modules_pattern.match(filename) is not None
def store_global_weakref_by_id(self, prefix: str, value: Any) -> str:
global_name = self.output.install_global_by_id(prefix, weakref.ref(value))
install_guard(
GlobalWeakRefSource(global_name).make_guard(GuardBuilder.WEAKREF_ALIVE)
)
return global_name
@property
def fake_mode(self) -> Optional[FakeTensorMode]:
return self.output.tracing_context.fake_mode
@contextlib.contextmanager
def strict_translation_mode(
self, check_fn: Callable[[VariableTracker], bool]
) -> Any:
"""
Strict mode is enabled on a per-VariableTracker level depending on the return value of check_fn(node).
"""
prior = self.strict_checks_fn
self.strict_checks_fn = check_fn
try:
yield
finally:
self.strict_checks_fn = prior
def speculate(self) -> SpeculationEntry:
assert self.instruction_pointer is not None
assert self.instruction_pointer > 0
return self.speculation_log.next(
self.f_code.co_filename,
self.lineno,
self.instruction_pointer - 1,
self.instructions[self.instruction_pointer - 1],
)
def __init__(
self,
output: OutputGraph,
instructions: list[Instruction],
f_locals: dict[str, Any],
f_globals: dict[str, Any],
f_builtins: dict[str, Any],
code_options: dict[str, Any],
symbolic_locals: dict[str, VariableTracker],
symbolic_globals: dict[str, VariableTracker],
symbolic_torch_function_state: SymbolicTorchFunctionState,
f_code: types.CodeType,
export: bool,
inline_depth: int,
speculation_log: SpeculationLog,
exn_vt_stack: ExceptionStack,
distributed_state: Optional[DistributedState],
# This determines whether to use the execution recorder.
closure: Optional[tuple[types.CellType]] = None,
package: Optional[CompilePackage] = None,
) -> None:
super().__init__()
self.speculation_log = speculation_log
self.distributed_state = distributed_state
# Mutable state checkpointed by copy_graphstate()
self.output = output
self.symbolic_locals = symbolic_locals
self.symbolic_globals = symbolic_globals
self.symbolic_torch_function_state = symbolic_torch_function_state
# used to keep cell/freevars alive after pruning symbolic_locals (prune_dead_locals)
# in order to generate any nested closures
self.post_prune_cell_and_freevars = None
self.stack: list[VariableTracker] = []
self.instruction_pointer = 0
self.start_point = None
self.current_instruction = create_instruction("NOP")
self.block_stack = []
# states before SETUP_WITH for checkpointing and fallback
self.active_generic_context_managers: list[GenericContextWrappingVariable] = []
self.lineno = -1
self.kw_names = None
self.accept_prefix_inst = True
self.prefix_insts = []
self.exn_vt_stack = exn_vt_stack
self.latest_bytecode_queue = deque(maxlen=20)
# Properties of the input/output code
self.instructions: list[Instruction] = instructions
self.indexof: dict[Instruction, int] = get_indexof(self.instructions)
self.f_locals: dict[str, Any] = (
f_locals # needed for recording accessed locals for replay
)
self.f_globals: dict[str, Any] = f_globals
self.f_builtins: dict[str, Any] = f_builtins
self.code_options: dict[str, Any] = code_options
self.f_code: types.CodeType = f_code
# Execution record for replaying errors
if closure is not None and config.replay_record_enabled:
self.exec_recorder = ExecutionRecorder(
code=f_code, closure=closure, code_options=code_options
)
else:
self.exec_recorder = None
# Stack of module being parsed, current nn.module is at the end of ordered dict.
# The first field of tuple is the fully qualified name of current module
# in original hierarchy. The second field is the type of current nn.module
self.nn_module_stack: dict[str, tuple[str, type[Any]]] = {}
self.num_calls: dict[str, int] = {}
# Flag to indicate whether tracing is used for export.
self.export = export
# NOTE: one_graph is used for export/fullgraph=True to always force errors on graph breaks.
# To toggle erroring/resuming on graph breaks during fullgraph=False compile, self.error_on_graph_break
# is used instead. Every step(), its value is updated to the global tls.error_on_graph_break.
# We mirror this value since cleanup may (correctly) inadvertently change tls.error_on_graph_break.
# This assumes that we cannot both trace a change to tls.error_on_graph_break and graph break on
# the same instruction.
self.one_graph = False
self.error_on_graph_break = False
# Also do not graph break when tracing resume function prologues
self.is_tracing_resume_prologue = False
self.current_speculation = None
self.strict_checks_fn = None
self.is_leaf_tracer = True
self.parent = None
self.debug_locals = []
self.package = package
from .resume_execution import (
CO_ASYNC_GENERATOR,
CO_COROUTINE,
CO_GENERATOR,
CO_ITERABLE_COROUTINE,
)
if f_code.co_flags & (
CO_GENERATOR | CO_COROUTINE | CO_ITERABLE_COROUTINE | CO_ASYNC_GENERATOR
):
self.push(BuiltinVariable(None))
self.inline_depth = inline_depth
self.inconsistent_side_effects = False
self._constants_cache: list[
Optional[Union[ConstantVariable, SliceVariable]]
] = [None] * len(f_code.co_consts)
self.is_trace_bytecode_log_enabled: Optional[bool] = (
trace_bytecode_log.isEnabledFor(logging.DEBUG)
)
self.is_trace_source_log_enabled: Optional[bool] = (
trace_source_log.isEnabledFor(logging.DEBUG)
)
linecache.lazycache(f_code.co_filename, f_globals)
class InstructionTranslator(InstructionTranslatorBase):
@staticmethod
def current_tx() -> InstructionTranslator:
return tls.current_tx
@contextlib.contextmanager
def set_current_tx(self) -> Any:
prior = getattr(tls, "current_tx", None)
tls.current_tx = self
try:
yield
finally:
tls.current_tx = prior
def __init__(
self,
instructions: list[Instruction],
f_code: types.CodeType,
f_locals: dict[str, Any],
f_globals: dict[str, Any],
f_builtins: dict[str, Any],
closure: Optional[tuple[Any, ...]],
torch_function_mode_stack: Any,
code_options: dict[str, Any],
compiler_fn: Any,
one_graph: bool,
export: bool,
export_constraints: Any,
frame_state: Any,
speculation_log: SpeculationLog,
exn_vt_stack: ExceptionStack,
distributed_state: Optional[DistributedState],
package: Optional[CompilePackage],
) -> None:
_step_logger()(
logging.INFO,
f"torchdynamo start tracing {f_code.co_name} {code_options['co_filename']}:{code_options['co_firstlineno']}",
)
super().__init__(
output=OutputGraph(
code_options,
compiler_fn,
self,
export,
export_constraints,
frame_state,
local_scope=f_locals,
global_scope=f_globals,
f_code=f_code,
torch_function_mode_stack=torch_function_mode_stack,
one_graph=one_graph,
package=package,
),
instructions=instructions,
f_locals=f_locals,
f_globals=f_globals,
f_builtins=f_builtins,
closure=closure,
code_options=code_options,
symbolic_locals={}, # set below
# A global var is inserted only after a STORE_GLOBAL happens to it
symbolic_globals={},
symbolic_torch_function_state=None, # type: ignore[arg-type] # set below
f_code=f_code,
export=export,
inline_depth=0,
speculation_log=speculation_log,
exn_vt_stack=exn_vt_stack,
distributed_state=distributed_state,
package=package,
)
self._throw_if_in_functorch()
# as soon as we create the tracing context we should keep it active, so any calls
# into dynamo apis can rely on finding it
with tracing(self.output.tracing_context), self.set_current_tx():
self.one_graph: bool = one_graph
self.export = export
if self.export:
assert self.one_graph, (
"Export without one graph - something has gone wrong."
)
self.symbolic_locals = {}
# Populate `symbolic_locals` with non-cell variables.
cell_and_freevars: set[str] = set(self.cell_and_freevars())
dynamism = code_context.get_context(f_code).get("dynamism", None)
for name, value in f_locals.items():
if name not in cell_and_freevars:
local_dynamism = None
if dynamism:
local_dynamism = frozenset(dynamism.get(name, {}).items())
var = LazyVariableTracker.create(
value,
LocalSource(
name,
is_input=True,
dynamism=local_dynamism,
),
)
self.symbolic_locals[name] = var
# Populate `symbolic_locals` with cells created by this frame,
# effectively implementing the `MAKE_CELL` instructions.
side_effects = self.output.side_effects
for name in self.cellvars():
if name in f_locals:
# This models cells that are also function inputs.
value = f_locals[name]
# NOTE: root frame inputs that are captured by a nested
# function become special cell objects -- they exist in
# `f_locals` as contents of the cells, rather than the cells
# objects themselves.
#
# In Dynamo, we choose to represent such input cell objects
# as newly created (rather than pre-existing) cell objects,
# because
#
# 1. The reason for representing a pre-existing cell object
# is to emit guard or codegen mutations. However, local
# cells should never be used for guards. Moreover, at this
# point these input cell objects should've never been
# accessed by anyone else, since Dynamo intercepts the frame
# right after its evaluation starts, i.e., right after these
# cell objects are created. So they should have no external
# reference, meaning no mutation needs to be propagated.
#
# 2. This conveniently allows codegen to prune away
# mutations to these cells, unless they escape the frame.
contents_source = LocalSource(
name, is_input=True, is_derefed_cell_contents=True
)
contents_var: VariableTracker = LazyVariableTracker.create(
value, contents_source
)
cell_var = side_effects.track_cell_new()
side_effects.store_cell(cell_var, contents_var)
else:
cell_var = side_effects.track_cell_new()
cell_var.local_name = name # type: ignore[attr-defined]
self.symbolic_locals[name] = cell_var
# Populate `symbolic_locals` with cells captured by this frame,
# effectively implementing the `COPY_FREE_VARS` instruction.
assert closure is not None
for name, cell in zip(self.freevars(), closure):
cell_source = LocalCellSource(name)
contents_source = LocalSource(name, is_derefed_cell_contents=True)
try:
contents_var = LazyVariableTracker.create(
cell.cell_contents, contents_source
)
except ValueError:
# Cell has not yet been assigned
contents_var = variables.DeletedVariable()
cell_var = side_effects.track_cell_existing(
cell_source, cell, contents_var
)
cell_var.local_name = name # type: ignore[attr-defined]
self.symbolic_locals[name] = cell_var
self.symbolic_torch_function_state = SymbolicTorchFunctionState(
torch_function_mode_stack
)
if export:
# export gets confused if we never realize unused inputs
# in export mode just eagerly realize everything
self.symbolic_locals = variables.LazyVariableTracker.realize_all(
self.symbolic_locals
)
def _throw_if_in_functorch(self) -> None:
# Fallback to eager in case of a graph break inside vmap
eager = torch._dynamo.lookup_backend("eager")
compiler_fn = inspect.getattr_static(
self.output.compiler_fn, "compiler_fn", self.output.compiler_fn
)
ci = torch._C._functorch.peek_interpreter_stack()
forbidden_keys = (
torch._C._functorch.TransformType.Vmap,
torch._C._functorch.TransformType.Grad,
torch._C._functorch.TransformType.Jvp,
)
if ci is not None and ci.key() in forbidden_keys and compiler_fn is not eager:
name = ci.key().name.lower()
msg = (
"If you are reaching here, it means dynamo failed for one of the following reasons:\n"
# Calling a torch.compiled function
f"- Calling torch.func.{name}(compiled_fn) function from eager mode is not supported. "
f"Ensure that torch.func.{name} is also wrapped within a torch.compile function. "
"For more information, see PyTorch issue #128711.\n"
# if it reaches here, it means Dynamo failed to inline a functorch function
f"- torch.func.{name}(fn) requires the function to be inlined by dynamo"
)
unimplemented_v2(
gb_type="Unsupported functorch tracing attempt",
context="",
explanation=msg,
hints=[],
)
def get_example_value(self, source: Source) -> Any:
if isinstance(source, LocalSource):
return self.f_locals[source.local_name]
if isinstance(source, GlobalSource):
return self.f_globals[source.global_name]
raise KeyError
def symbolic_locals_contain_module_class(self) -> bool:
for v in self.symbolic_locals.values():
if isinstance(v, UserDefinedClassVariable) and issubclass(
v.as_python_constant(), torch.nn.Module
):
return True
return False
def replace_tos_if_return_is_generator(self) -> None:
if (
len(self.stack)
and (tos := self.stack[-1])
and isinstance(tos, LocalGeneratorObjectVariable)
):
self.stack[-1] = ListIteratorVariable(
# pyrefly: ignore # unbound-name
tos.force_unpack_var_sequence(self),
mutation_type=ValueMutationNew(),
)
def _return(self, inst: Instruction) -> None:
self.replace_tos_if_return_is_generator()
assert self.instruction_pointer is not None
assert self.start_point is not None
get_metrics_context().increment(
"ir_count", self.instruction_pointer - self.start_point
)
if (
not config.allow_empty_graphs
and self.output.count_calls() == 0
and not self.inconsistent_side_effects
and not self.symbolic_locals_contain_module_class()
and not self.export
and not self.one_graph
and not self.error_on_graph_break
and not self.is_tracing_resume_prologue
):
raise exc.SkipFrame("because no content in function call")
self.instruction_pointer = None
_step_logger()(
logging.INFO,
f"torchdynamo done tracing {self.f_code.co_name} ({inst.opname})",
)
log.debug("%s triggered compile", inst.opname)
all_stack_locals_metadata = self.output.compile_subgraph(
self,
reason=GraphCompileReason(
"return_value", [self.frame_summary()], graph_break=False
),
# the value to be returned
stack_pops=1 if inst.opname == "RETURN_VALUE" else 0,
)
# check that our stack/locals meta are correct:
# we should only be tracing 1 frame, and there should not be any NULLs on the stack
assert len(all_stack_locals_metadata) == 1
assert not all_stack_locals_metadata[0].stack_null_idxes
self.output.add_output_instructions(
self.codegen_return_with_pops(inst, all_stack_locals_metadata[0].num_stack)
)
raise ReturnValueOp
def RETURN_VALUE(self, inst: Instruction) -> None:
self._return(inst)
def RETURN_CONST(self, inst: Instruction) -> None:
self._return(inst)
if sys.version_info >= (3, 11):
_binary_op_lookup = [
getattr(
InstructionTranslator,
opname[3:] if "INPLACE" in opname else f"BINARY_{opname[3:]}",
)
for opname, _ in dis._nb_ops # type: ignore[attr-defined]
]
class InliningInstructionTranslator(InstructionTranslatorBase):
"""Trace and inline a called method"""
symbolic_result: Optional[VariableTracker]
# pyrefly: ignore # bad-override
parent: InstructionTranslatorBase
@classmethod
def inline_call(cls, parent: Any, func: Any, args: Any, kwargs: Any) -> Any:
with patch.dict(counters, {"unimplemented": counters["inline_call"]}):
tracer = cls.build_inline_tracer(parent, func, args, kwargs)
return tracer.inline_call_()
@staticmethod
def check_inlineable(func: Any) -> trace_rules.SkipResult:
if func.has_self():
unimplemented_v2(
gb_type="Inline attempt with __self__",
context=str(func),
explanation="Attempted to inline a function with the `__self__` attribute. "
"Dynamo is expected to decompose method calls into function calls with a `self` argument.",
hints=[],
)
if isinstance(func, UserFunctionVariable) and inspect.getattr_static(
func.get_function(), "_torchdynamo_disable", False
):
msg = inspect.getattr_static(
func.get_function(), "_torchdynamo_disable_msg", None
)
unimplemented_v2(
gb_type="Skip inlining `torch.compiler.disable()`d function",
context=str(func.get_function()),
explanation=f"Skip inlining function {func.get_function()} since it was wrapped "
f"with `torch.compiler.disable` (reason: {msg})",
hints=[
"Remove the `torch.compiler.disable` call",
],
)
result = trace_rules.check_verbose(func, is_inlined_call=True)
if result.skipped:
from torch._dynamo.variables.misc import produce_trampoline_autograd_apply
# _origin marks this as coming from an internal dynamo known function that is safe to
# trace through.
if (
hasattr(getattr(func, "fn", None), "_origin")
# pyrefly: ignore # missing-attribute
and func.fn._origin is produce_trampoline_autograd_apply
):
# Known sound
return trace_rules.SkipResult(
False, "allowlist in dynamo known function"
)
fn_qualname = func.fn.__qualname__ if hasattr(func, "fn") else ""
hints = [
f"Avoid calling the function `{fn_qualname}`.",
]
if "_dynamo" not in func.get_filename():
hints += [
f"Apply `@torch._dynamo.dont_skip_tracing` to the function `{fn_qualname}` "
"to force tracing into the function. "
"More graph breaks may occur as a result of attempting to trace into the function.",
"Please file an issue to PyTorch.",
]
unimplemented_v2(
gb_type="Attempted to inline function marked as skipped",
context=f"qualname: {fn_qualname}, name: {func.get_name()}, "
f"filename: `{func.get_filename()}`, skip reason: {result.reason}",
explanation=f"Dynamo developers have intentionally marked that the function `{fn_qualname}` "
"should not be traced.",
hints=hints,
)
return result
@staticmethod
def build_inline_tracer(
parent: Any,
func: VariableTracker,
args: list[VariableTracker],
kwargs: Any,
) -> InliningInstructionTranslator:
assert isinstance(
func,
(
UserFunctionVariable,
NestedUserFunctionVariable,
LocalGeneratorFunctionVariable,
LocalGeneratorObjectVariable,
),
)
code: types.CodeType = func.get_code()
result = None
tracing_ctx = parent.output.tracing_context
# Check if we have already identified this function to be inline-able.
# The exception is dont_skip_tracing flag which affects the inline
# behavior. If the flag is True, don't rely on previous results.
if not config.dont_skip_tracing and tracing_ctx:
if previous_result := tracing_ctx.previously_inlined_functions.get(
code, None
):
result = previous_result
if result is None:
if isinstance(func, SkipFunctionVariable):
unimplemented_v2(
gb_type="Attempted to inline function marked as skipped (SkipFunctionVariable)",
context=f"Attempted to inline a SkipFunctionVariable {func}",
explanation=(
"Attempted to inline a function that was previously determined to be marked as intentionally skipped."
),
hints=[],
)
result = InliningInstructionTranslator.check_inlineable(func)
assert result.skipped is False
if not config.dont_skip_tracing and tracing_ctx:
tracing_ctx.previously_inlined_functions[code] = result
try:
# pyrefly: ignore # missing-attribute
sub_locals = func.bind_args(parent, args, kwargs)
except TypeError as e:
# Wrap the general TypeError during bind_args() to the internal ArgsMismatchError with detailed info
raise ArgsMismatchError( # noqa: B904
"{reason}.\n func = {func}, args = {args}, kwargs = {kwargs}".format(
reason=str(e),
# pyrefly: ignore # missing-attribute
func=f"'{func.get_name()}' {func.get_filename()}:{func.get_code().co_firstlineno}",
args=[arg.python_type() for arg in args],
kwargs=kwargs,
),
)
for v in itertools.chain(sub_locals.values()):
if not isinstance(v, VariableTracker):
unimplemented_v2(
gb_type="Encountered unconverted argument when attempting to inline",
context=f"func: {func}, arg: {v}",
explanation="An argument to an inlined function was not successfully converted to a VariableTracker.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
if code.co_name in ("__setitem__", "__setattr__") and not (
args and isinstance(args[0], variables.UserDefinedObjectVariable)
):
unimplemented_v2(
gb_type="Unsupported __setitem__/__setattr__ inline attempt",
context=f"code name: {code.co_name}, args: {args}",
explanation=f"Attempted to inline {code.co_name} where first argument (self) is not a user-defined object.",
hints=[],
)
suffix = ""
# TODO: mlazos, add support for enabling multiple artifact logs
# with a single alias
if torch._logging._internal.log_state.is_artifact_enabled("bytecode"):
suffix = f"\n{dis.Bytecode(code).dis()}"
if sys.version_info >= (3, 11):
cur_inst = parent.current_instruction
parent_code = parent.f_code
def get_trace_call_log_str() -> str:
header = parent.get_line_of_code_header(
lineno=cur_inst.positions.lineno
)
line = get_instruction_source_311(parent_code, cur_inst).rstrip()
return f"TRACE inlined call {code.co_name} from {header}\n{line}"
trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
log.debug("INLINING %s%s, %s", code, suffix, result.reason)
# Detect inline GraphModule calls in order to propagate node metadata,
# by checking if the first argument (self) is a variable tracking a GraphModule.
if args and isinstance(args[0], NNModuleVariable):
module = parent.output.get_submodule(args[0].module_key)
if isinstance(module, torch.fx.GraphModule):
# The inline call might not actually be a call to `forward`,
# but it is enough to add a context for `forward` in case it is called.
code_context.get_context(module.forward.__code__)[
"orig_graphmodule"
] = weakref.ref(module)
# When we have inline_nn_module turned on, modules resolve to UnspecializedNNModuleVariable
if args and isinstance(args[0], UnspecializedNNModuleVariable):
module = args[0].value
if isinstance(module, torch.fx.GraphModule):
# The inline call might not actually be a call to `forward`,
# but it is enough to add a context for `forward` in case it is called.
code_context.get_context(module.forward.__code__)[
"orig_graphmodule"
] = weakref.ref(module)
tracer: InliningInstructionTranslator
if is_generator(code):
tracer = InliningGeneratorInstructionTranslator(
parent,
code,
sub_locals,
parent.symbolic_globals,
parent.symbolic_torch_function_state,
func,
)
else:
# need the line below to make MyPy happy
assert not isinstance(func, LocalGeneratorObjectVariable)
tracer = InliningInstructionTranslator(
parent,
code,
sub_locals,
parent.symbolic_globals,
parent.symbolic_torch_function_state,
# pyrefly: ignore # bad-argument-type
func,
)
return tracer
def inline_call_(self) -> VariableTracker:
parent = self.parent
code = self.f_code
strict_ctx: Any = contextlib.nullcontext()
if parent.strict_checks_fn:
strict_ctx = self.strict_translation_mode(parent.strict_checks_fn)
try:
with strict_ctx:
self.run()
except exc.ObservedException as e:
msg = f"Observed exception DURING INLING {code} : {e}"
log.debug(msg)
# bubble up the exception to the parent frame.
raise
except exc.SkipFrame as e:
msg = f"SKIPPED INLINING {code}: {e}"
log.debug(msg)
raise Unsupported(msg) from e
except Exception:
log.debug("FAILED INLINING %s", code)
raise
finally:
parent.error_on_graph_break = self.error_on_graph_break
if self.output.should_exit:
# graph break
return ConstantVariable.create(None) # return dummy variable
assert self.symbolic_result is not None
if self.f_globals is parent.f_globals:
# Merge symbolic_globals back if parent and child are in the same namespace
parent.symbolic_globals.update(self.symbolic_globals)
parent.inconsistent_side_effects |= self.inconsistent_side_effects
log.debug("DONE INLINING %s", code)
self.output.tracing_context.traced_code.append(code)
if config.enable_faithful_generator_behavior or (
isinstance(self, InliningGeneratorInstructionTranslator)
and self.is_generator_from_ctx_manager
):
if (
is_generator(code)
and isinstance(self, InliningGeneratorInstructionTranslator)
and self.generator_exhausted
):
assert isinstance(self, InliningGeneratorInstructionTranslator)
# When the generator returns None, we raise StopIteration
args = []
if not (
isinstance(self.symbolic_result, ConstantVariable)
and self.symbolic_result.value is None
):
args = [self.symbolic_result]
exc.raise_observed_exception(StopIteration, self, args=args)
else:
return self.symbolic_result
else:
if is_generator(code):
assert isinstance(self, InliningGeneratorInstructionTranslator)
assert self.symbolic_result.as_python_constant() is None
return ListIteratorVariable(
self.generated_items,
mutation_type=ValueMutationNew(),
)
else:
return self.symbolic_result
def __init__(
self,
parent: InstructionTranslatorBase,
code: types.CodeType,
symbolic_locals: dict[str, VariableTracker],
symbolic_globals: dict[str, VariableTracker],
symbolic_torch_function_state: SymbolicTorchFunctionState,
funcvar: BaseUserFunctionVariable,
) -> None:
f_globals = funcvar.get_globals() # type: ignore[attr-defined]
f_builtins = f_globals["__builtins__"]
if not isinstance(f_builtins, dict):
f_builtins = f_builtins.__dict__
# Get the cached instructions. These instructions are safe to cache
# because we dont mutate them in transform_code_object (those
# instructions are for the top most Instruction translator). Also, we
# have to be careful about not using _cached_cleaned_instructions here
# because that function is global, while we want the cache to be
# alive only during a compmilation.
tracing_ctx = parent.output.tracing_context
instructions = None
if tracing_ctx:
if tracing_ctx.previously_cleaned_instructions.get(code):
instructions = tracing_ctx.previously_cleaned_instructions[code]
if instructions is None:
instructions = cleaned_instructions(code)
propagate_line_nums(instructions)
if tracing_ctx:
tracing_ctx.previously_cleaned_instructions[code] = instructions
super().__init__(
output=parent.output,
f_locals={},
f_globals=f_globals,
f_builtins=f_builtins,
symbolic_locals=symbolic_locals,
symbolic_globals=symbolic_globals,
symbolic_torch_function_state=symbolic_torch_function_state,
instructions=instructions,
code_options={k: getattr(code, k) for k in get_code_keys()},
f_code=code,
export=parent.export,
inline_depth=parent.inline_depth + 1,
speculation_log=parent.speculation_log,
exn_vt_stack=parent.exn_vt_stack,
distributed_state=parent.distributed_state,
package=parent.package,
)
self.funcvar = funcvar
self.parent = parent
self.num_calls = parent.num_calls
self.symbolic_result = None
self.nn_module_stack = parent.nn_module_stack.copy()
self.one_graph = parent.one_graph
@property
def fake_mode(self) -> Optional[FakeTensorMode]:
return self.parent.fake_mode
def run_ctx_mgr(self) -> Any:
return TracingContext.current_frame(self.parent.frame_summary())
def should_compile_partial_graph(self) -> bool:
if config.nested_graph_breaks:
if not self.parent.should_compile_partial_graph():
return False
return super().should_compile_partial_graph()
return False # inlining functions is all-or-nothing
def create_call_resume_at(
self,
inst: Instruction,
all_stack_locals_metadata: list[StackLocalsMetadata],
) -> list[Instruction]:
if config.nested_graph_breaks:
return super().create_call_resume_at(inst, all_stack_locals_metadata)
unimplemented_v2(
gb_type="Graph break in inlined function",
context="",
explanation="Graph breaks in an inlined call are not supported.",
hints=[],
)
def RETURN_VALUE(self, inst: Instruction) -> None:
self.symbolic_result = self.pop() # type: ignore[assignment]
self.instruction_pointer = None
raise ReturnValueOp
def RETURN_CONST(self, inst: Instruction) -> None:
self.symbolic_result = self._load_const(inst)
self.instruction_pointer = None
raise ReturnValueOp
def get_globals_source_and_value(
self, name: str
) -> tuple[Any, VariableTracker, Source]:
# NamedTuple's `__new__` has a fake global scope that's not an actual
# module. TODO generalize the check for other non-importable cases.
# https://github.com/python/cpython/blob/8421b03b16a4852a527256cb7cdce2ab2d318548/Lib/collections/__init__.py#L441-L447
if "__name__" in self.f_globals and not self.f_globals["__name__"].startswith(
"namedtuple_"
):
module_name = self.f_globals["__name__"]
module_source = self.import_source(module_name)
if "torch_package" in module_name:
fglobals_value = (
torch.package.package_importer._package_imported_modules[
module_name
]
) # type: ignore[assignment]
else:
fglobals_value = _import_module(module_name)
# Dont use lazy vt because we will do a setattr afterwards
fglobals_vt = VariableBuilder(self, module_source)(fglobals_value)
global_source = AttrSource(module_source, name)
else:
globals_name = self.output.install_global_by_id(
"___unnamed_scope", self.f_globals
)
globals_source = GlobalSource(globals_name)
fglobals_value = self.f_globals # type: ignore[assignment]
# Dont use lazy vt because we will do a setattr afterwards
fglobals_vt = VariableBuilder(self, globals_source)(fglobals_value)
global_source = DictGetItemSource(globals_source, name) # type: ignore[assignment]
if is_stdlib(fglobals_value):
# Users don't inplace mutate a stdlib attribute (like inspect,
# collections), skip guards that originate from the stdlib modules.
global_source = SkipGuardSource(global_source) # type: ignore[assignment]
return fglobals_value, fglobals_vt, global_source
def _load_global(self, inst: Instruction) -> None:
name = inst.argval
if name not in self.f_globals:
return self.load_builtin(inst)
if self.output.global_scope is self.f_globals:
# If the global scope matches that of the root frame, use handler in
# root frame instruction translator, to enforce consistency.
super()._load_global(inst)
else:
_, fglobals_vt, global_source = self.get_globals_source_and_value(name)
if self.output.side_effects.has_pending_mutation_of_attr(fglobals_vt, name):
self.push(self.output.side_effects.load_attr(fglobals_vt, name))
else:
value = self.f_globals[name]
self.push(VariableTracker.build(self, value, global_source))
def STORE_GLOBAL(self, inst: Instruction) -> None:
if self.output.global_scope is self.f_globals:
# If the global scope matches that of the root frame, use handler in
# root frame instruction translator, to enforce consistency.
super().STORE_GLOBAL(inst)
else:
value = self.pop()
if isinstance(value, RemovableHandleVariable):
unimplemented_v2(
gb_type="Storing Tensor hook handle in globals (inline call)",
context=inst.argval,
explanation="This is not supported.",
hints=[],
)
name = inst.argval
_fglobals_value, fglobals_vt, _ = self.get_globals_source_and_value(name)
self.output.side_effects.store_attr(fglobals_vt, name, value)
class InliningGeneratorInstructionTranslator(InliningInstructionTranslator):
generated_items: list[VariableTracker]
# Flag whether or not the InlineGenerator should consume the entire iterator
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.generated_items = []
self.generator_exhausted = False
self.is_generator_from_ctx_manager = False
def YIELD_VALUE(self, inst: Instruction) -> None:
top = self.pop()
self.generated_items.append(top)
if len(self.generated_items) > MAX_ITERATOR_LIMIT:
raise exc.InfiniteGeneratorError(
"Too many yield values in generator. Maybe you are inlining an infinite generator. "
f"If not, please report a bug at {PT2_ISSUE_TRACKER_URL}",
)
self.push(ConstantVariable.create(None))
if (
config.enable_faithful_generator_behavior
or self.is_generator_from_ctx_manager
):
self.symbolic_result = top
# Stop tracing
raise YieldValueOp
def GET_YIELD_FROM_ITER(self, inst: Instruction) -> None:
tos = self.stack[-1]
if not isinstance(tos, ListIteratorVariable):
self.pop()
res = BuiltinVariable(iter).call_function(self, [tos], {}) # type: ignore[arg-type]
self.push(res)
def RETURN_VALUE(self, inst: Instruction) -> None:
self.generator_exhausted = True
return super().RETURN_VALUE(inst)
def RETURN_CONST(self, inst: Instruction) -> None:
self.generator_exhausted = True
return super().RETURN_CONST(inst)
def YIELD_FROM(self, inst: Instruction) -> None:
assert len(self.stack) >= 2
val = self.pop()
tos = self.stack[-1]
if not (isinstance(val, ConstantVariable) and val.value is None):
# invoke send
# Unreachable code - if you hit this, you are implementing generator support and have
# lifted the `unimplemented("generator")` in frame conversion. This codepath handles
# subgenerator and lines up with this line in Python 3.10
# https://github.com/python/cpython/blob/3.10/Python/ceval.c#L2599
unimplemented_v2(
gb_type="Unreachable sub-generator code",
context="",
explanation="Should only be encountered while implementing generator support.",
hints=[],
)
try:
val = tos.next_variable(self)
except (StopIteration, exc.ObservedUserStopIteration) as ex:
if isinstance(ex, exc.ObservedUserStopIteration):
exc.handle_observed_exception(self)
# The iterator is exhausted. Stop the loop and return.
self.pop()
self.push(ConstantVariable.create(ex.value))
else:
# Repeat the YIELD_FROM instruction in the next eval loop
assert (
isinstance(self.instruction_pointer, int)
and self.instruction_pointer > 0
)
self.instruction_pointer -= 1
self.push(val)
# Add the value to yield into generated_items and replace the top of the stack with None
self.YIELD_VALUE(inst)
def SEND(self, inst: Instruction) -> None:
assert len(self.stack) >= 2
val = self.pop()
tos = self.stack[-1]
if isinstance(tos, (IteratorVariable, LocalGeneratorObjectVariable)) or (
isinstance(tos, UserDefinedObjectVariable)
and isinstance(tos.value, collections.abc.Iterator)
):
if isinstance(val, ConstantVariable) and val.value is None:
try:
val = tos.next_variable(self)
except (StopIteration, exc.ObservedUserStopIteration) as ex:
# To implement SEND, we have to look at the implementation
# when the iterator returns StopIteration. This translates to this code
# 3.11: https://github.com/python/cpython/blob/3.11/Python/ceval.c#L2613-L2619
# 3.12: https://github.com/python/cpython/blob/3.12/Python/bytecodes.c#L863-L866
# The implementation is different in 3.11 and 3.12. In 3.12, we rely
# on END_SEND to clean up. In 3.11, SEND does the cleanup as well.
if sys.version_info < (3, 12):
self.pop() # Python 3.12 uses new opcode END_SEND
self.push(ConstantVariable.create(ex.value))
self.jump(inst)
else:
self.push(val)
else:
# invoke send
# Unreachable code - if you hit this, you are implementing generator support and have
# lifted the `unimplemented("generator")` in frame conversion. This codepath handles
# subgenerator and lines up with this line in Python 3.11
# https://github.com/python/cpython/blob/3.11/Python/ceval.c#L2597
unimplemented_v2(
gb_type="Unreachable sub-generator code",
context="",
explanation="Should only be encountered while implementing generator support.",
hints=[],
)
else:
unimplemented_v2(
gb_type="SEND with bad type",
context=f"TOS type: {typestr(tos)}",
explanation=f"Attempted to SEND with unsupported type {typestr(tos)}.",
hints=[],
)