Files
pytorch/test/onnx/test_verification.py
Aaron Gokaslan 292af3cc89 [BE][Ez]: ISC001 Auto concatenate implicit one line strings (#146408)
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2025-02-04 19:07:04 +00:00

299 lines
9.7 KiB
Python

# Owner(s): ["module: onnx"]
import contextlib
import io
import tempfile
import unittest
import numpy as np
import onnx
import parameterized
import pytorch_test_common
from packaging import version
import torch
from torch.onnx import _constants, _experimental, verification
from torch.testing._internal import common_utils
class TestVerification(pytorch_test_common.ExportTestCase):
def test_check_export_model_diff_returns_diff_when_constant_mismatch(self):
class UnexportableModel(torch.nn.Module):
def forward(self, x, y):
# tensor.data() will be exported as a constant,
# leading to wrong model output under different inputs.
return x + y.data
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(2, 3), torch.randn(2, 3)), {}),
]
results = verification.check_export_model_diff(
UnexportableModel(), test_input_groups
)
self.assertRegex(
results,
r"Graph diff:(.|\n)*"
r"First diverging operator:(.|\n)*"
r"prim::Constant(.|\n)*"
r"Former source location:(.|\n)*"
r"Latter source location:",
)
def test_check_export_model_diff_returns_diff_when_dynamic_controlflow_mismatch(
self,
):
class UnexportableModel(torch.nn.Module):
def forward(self, x, y):
for i in range(x.size(0)):
y = x[i] + y
return y
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(4, 3), torch.randn(2, 3)), {}),
]
export_options = _experimental.ExportOptions(
input_names=["x", "y"], dynamic_axes={"x": [0]}
)
results = verification.check_export_model_diff(
UnexportableModel(), test_input_groups, export_options
)
self.assertRegex(
results,
r"Graph diff:(.|\n)*"
r"First diverging operator:(.|\n)*"
r"prim::Constant(.|\n)*"
r"Latter source location:(.|\n)*",
)
def test_check_export_model_diff_returns_empty_when_correct_export(self):
class SupportedModel(torch.nn.Module):
def forward(self, x, y):
return x + y
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(2, 3), torch.randn(2, 3)), {}),
]
results = verification.check_export_model_diff(
SupportedModel(), test_input_groups
)
self.assertEqual(results, "")
def test_compare_ort_pytorch_outputs_no_raise_with_acceptable_error_percentage(
self,
):
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
options = verification.VerificationOptions(
rtol=1e-5,
atol=1e-6,
check_shape=True,
check_dtype=False,
ignore_none=True,
acceptable_error_percentage=0.3,
)
verification._compare_onnx_pytorch_outputs(
ort_outs,
pytorch_outs,
options,
)
def test_compare_ort_pytorch_outputs_raise_without_acceptable_error_percentage(
self,
):
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
options = verification.VerificationOptions(
rtol=1e-5,
atol=1e-6,
check_shape=True,
check_dtype=False,
ignore_none=True,
acceptable_error_percentage=None,
)
with self.assertRaises(AssertionError):
verification._compare_onnx_pytorch_outputs(
ort_outs,
pytorch_outs,
options,
)
@common_utils.instantiate_parametrized_tests
class TestVerificationOnWrongExport(pytorch_test_common.ExportTestCase):
opset_version: int
def setUp(self):
super().setUp()
def incorrect_add_symbolic_function(g, self, other, alpha):
return self
self.opset_version = _constants.ONNX_DEFAULT_OPSET
torch.onnx.register_custom_op_symbolic(
"aten::add",
incorrect_add_symbolic_function,
opset_version=self.opset_version,
)
def tearDown(self):
super().tearDown()
torch.onnx.unregister_custom_op_symbolic(
"aten::add", opset_version=self.opset_version
)
@common_utils.parametrize(
"onnx_backend",
[
common_utils.subtest(
verification.OnnxBackend.REFERENCE,
decorators=[
unittest.skipIf(
version.Version(onnx.__version__) < version.Version("1.13"),
reason="Reference Python runtime was introduced in 'onnx' 1.13.",
)
],
),
verification.OnnxBackend.ONNX_RUNTIME_CPU,
],
)
def test_verify_found_mismatch_when_export_is_wrong(
self, onnx_backend: verification.OnnxBackend
):
class Model(torch.nn.Module):
def forward(self, x):
return x + 1
with self.assertRaisesRegex(AssertionError, ".*Tensor-likes are not close!.*"):
verification.verify(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=onnx_backend),
)
@parameterized.parameterized_class(
[
# TODO: enable this when ONNX submodule catches up to >= 1.13.
# {"onnx_backend": verification.OnnxBackend.ONNX},
{"onnx_backend": verification.OnnxBackend.ONNX_RUNTIME_CPU},
],
class_name_func=lambda cls,
idx,
input_dicts: f"{cls.__name__}_{input_dicts['onnx_backend'].name}",
)
class TestFindMismatch(pytorch_test_common.ExportTestCase):
onnx_backend: verification.OnnxBackend
opset_version: int
graph_info: verification.GraphInfo
def setUp(self):
super().setUp()
self.opset_version = _constants.ONNX_DEFAULT_OPSET
def incorrect_relu_symbolic_function(g, self):
return g.op("Add", self, g.op("Constant", value_t=torch.tensor(1.0)))
torch.onnx.register_custom_op_symbolic(
"aten::relu",
incorrect_relu_symbolic_function,
opset_version=self.opset_version,
)
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(3, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 5),
torch.nn.ReLU(),
torch.nn.Linear(5, 6),
)
def forward(self, x):
return self.layers(x)
self.graph_info = verification.find_mismatch(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=self.onnx_backend),
)
def tearDown(self):
super().tearDown()
torch.onnx.unregister_custom_op_symbolic(
"aten::relu", opset_version=self.opset_version
)
delattr(self, "opset_version")
delattr(self, "graph_info")
def test_pretty_print_tree_visualizes_mismatch(self):
f = io.StringIO()
with contextlib.redirect_stdout(f):
self.graph_info.pretty_print_tree()
self.assertExpected(f.getvalue())
def test_preserve_mismatch_source_location(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertTrue(len(mismatch_leaves) > 0)
for leaf_info in mismatch_leaves:
f = io.StringIO()
with contextlib.redirect_stdout(f):
leaf_info.pretty_print_mismatch(graph=True)
self.assertRegex(
f.getvalue(),
r"(.|\n)*aten::relu.*/torch/nn/functional.py:[0-9]+(.|\n)*",
)
def test_find_all_mismatch_operators(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertEqual(len(mismatch_leaves), 2)
for leaf_info in mismatch_leaves:
self.assertEqual(leaf_info.essential_node_count(), 1)
self.assertEqual(leaf_info.essential_node_kinds(), {"aten::relu"})
def test_find_mismatch_prints_correct_info_when_no_mismatch(self):
self.maxDiff = None
class Model(torch.nn.Module):
def forward(self, x):
return x + 1
f = io.StringIO()
with contextlib.redirect_stdout(f):
verification.find_mismatch(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=self.onnx_backend),
)
self.assertExpected(f.getvalue())
def test_export_repro_for_mismatch(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertTrue(len(mismatch_leaves) > 0)
leaf_info = mismatch_leaves[0]
with tempfile.TemporaryDirectory() as temp_dir:
repro_dir = leaf_info.export_repro(temp_dir)
with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"):
options = verification.VerificationOptions(backend=self.onnx_backend)
verification.OnnxTestCaseRepro(repro_dir).validate(options)
if __name__ == "__main__":
common_utils.run_tests()